| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghmf1o.b |
|- B = ( Base ` R ) |
| 2 |
|
rnghmf1o.c |
|- C = ( Base ` S ) |
| 3 |
|
isrngim |
|- ( ( R e. V /\ S e. W ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) ) ) |
| 4 |
1 2
|
rnghmf1o |
|- ( F e. ( R RngHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S RngHom R ) ) ) |
| 5 |
4
|
bicomd |
|- ( F e. ( R RngHom S ) -> ( `' F e. ( S RngHom R ) <-> F : B -1-1-onto-> C ) ) |
| 6 |
5
|
a1i |
|- ( ( R e. V /\ S e. W ) -> ( F e. ( R RngHom S ) -> ( `' F e. ( S RngHom R ) <-> F : B -1-1-onto-> C ) ) ) |
| 7 |
6
|
pm5.32d |
|- ( ( R e. V /\ S e. W ) -> ( ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) <-> ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) ) ) |
| 8 |
3 7
|
bitrd |
|- ( ( R e. V /\ S e. W ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) ) ) |