Step |
Hyp |
Ref |
Expression |
1 |
|
rngisoval.1 |
|- G = ( 1st ` R ) |
2 |
|
rngisoval.2 |
|- X = ran G |
3 |
|
rngisoval.3 |
|- J = ( 1st ` S ) |
4 |
|
rngisoval.4 |
|- Y = ran J |
5 |
1 2 3 4
|
rngoisoval |
|- ( ( R e. RingOps /\ S e. RingOps ) -> ( R RngIso S ) = { f e. ( R RngHom S ) | f : X -1-1-onto-> Y } ) |
6 |
5
|
eleq2d |
|- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RngIso S ) <-> F e. { f e. ( R RngHom S ) | f : X -1-1-onto-> Y } ) ) |
7 |
|
f1oeq1 |
|- ( f = F -> ( f : X -1-1-onto-> Y <-> F : X -1-1-onto-> Y ) ) |
8 |
7
|
elrab |
|- ( F e. { f e. ( R RngHom S ) | f : X -1-1-onto-> Y } <-> ( F e. ( R RngHom S ) /\ F : X -1-1-onto-> Y ) ) |
9 |
6 8
|
bitrdi |
|- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RngIso S ) <-> ( F e. ( R RngHom S ) /\ F : X -1-1-onto-> Y ) ) ) |