Metamath Proof Explorer


Theorem isrusgr

Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018) (Revised by AV, 18-Dec-2020)

Ref Expression
Assertion isrusgr
|- ( ( G e. W /\ K e. Z ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ G RegGraph K ) ) )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( g = G -> ( g e. USGraph <-> G e. USGraph ) )
2 1 adantr
 |-  ( ( g = G /\ k = K ) -> ( g e. USGraph <-> G e. USGraph ) )
3 breq12
 |-  ( ( g = G /\ k = K ) -> ( g RegGraph k <-> G RegGraph K ) )
4 2 3 anbi12d
 |-  ( ( g = G /\ k = K ) -> ( ( g e. USGraph /\ g RegGraph k ) <-> ( G e. USGraph /\ G RegGraph K ) ) )
5 df-rusgr
 |-  RegUSGraph = { <. g , k >. | ( g e. USGraph /\ g RegGraph k ) }
6 4 5 brabga
 |-  ( ( G e. W /\ K e. Z ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ G RegGraph K ) ) )