| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( g = G -> ( g e. USGraph <-> G e. USGraph ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( g = G /\ k = K ) -> ( g e. USGraph <-> G e. USGraph ) ) | 
						
							| 3 |  | breq12 |  |-  ( ( g = G /\ k = K ) -> ( g RegGraph k <-> G RegGraph K ) ) | 
						
							| 4 | 2 3 | anbi12d |  |-  ( ( g = G /\ k = K ) -> ( ( g e. USGraph /\ g RegGraph k ) <-> ( G e. USGraph /\ G RegGraph K ) ) ) | 
						
							| 5 |  | df-rusgr |  |-  RegUSGraph = { <. g , k >. | ( g e. USGraph /\ g RegGraph k ) } | 
						
							| 6 | 4 5 | brabga |  |-  ( ( G e. W /\ K e. Z ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ G RegGraph K ) ) ) |