Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
|
vex |
|- y e. _V |
3 |
1 2
|
opeldm |
|- ( <. x , y >. e. A -> x e. dom A ) |
4 |
3
|
a1i |
|- ( A C_ _I -> ( <. x , y >. e. A -> x e. dom A ) ) |
5 |
|
ssel |
|- ( A C_ _I -> ( <. x , y >. e. A -> <. x , y >. e. _I ) ) |
6 |
4 5
|
jcad |
|- ( A C_ _I -> ( <. x , y >. e. A -> ( x e. dom A /\ <. x , y >. e. _I ) ) ) |
7 |
|
df-br |
|- ( x _I y <-> <. x , y >. e. _I ) |
8 |
2
|
ideq |
|- ( x _I y <-> x = y ) |
9 |
7 8
|
bitr3i |
|- ( <. x , y >. e. _I <-> x = y ) |
10 |
1
|
eldm2 |
|- ( x e. dom A <-> E. y <. x , y >. e. A ) |
11 |
|
opeq2 |
|- ( x = y -> <. x , x >. = <. x , y >. ) |
12 |
11
|
eleq1d |
|- ( x = y -> ( <. x , x >. e. A <-> <. x , y >. e. A ) ) |
13 |
12
|
biimprcd |
|- ( <. x , y >. e. A -> ( x = y -> <. x , x >. e. A ) ) |
14 |
9 13
|
syl5bi |
|- ( <. x , y >. e. A -> ( <. x , y >. e. _I -> <. x , x >. e. A ) ) |
15 |
5 14
|
sylcom |
|- ( A C_ _I -> ( <. x , y >. e. A -> <. x , x >. e. A ) ) |
16 |
15
|
exlimdv |
|- ( A C_ _I -> ( E. y <. x , y >. e. A -> <. x , x >. e. A ) ) |
17 |
10 16
|
syl5bi |
|- ( A C_ _I -> ( x e. dom A -> <. x , x >. e. A ) ) |
18 |
12
|
imbi2d |
|- ( x = y -> ( ( x e. dom A -> <. x , x >. e. A ) <-> ( x e. dom A -> <. x , y >. e. A ) ) ) |
19 |
17 18
|
syl5ibcom |
|- ( A C_ _I -> ( x = y -> ( x e. dom A -> <. x , y >. e. A ) ) ) |
20 |
9 19
|
syl5bi |
|- ( A C_ _I -> ( <. x , y >. e. _I -> ( x e. dom A -> <. x , y >. e. A ) ) ) |
21 |
20
|
impcomd |
|- ( A C_ _I -> ( ( x e. dom A /\ <. x , y >. e. _I ) -> <. x , y >. e. A ) ) |
22 |
6 21
|
impbid |
|- ( A C_ _I -> ( <. x , y >. e. A <-> ( x e. dom A /\ <. x , y >. e. _I ) ) ) |
23 |
2
|
opelresi |
|- ( <. x , y >. e. ( _I |` dom A ) <-> ( x e. dom A /\ <. x , y >. e. _I ) ) |
24 |
22 23
|
bitr4di |
|- ( A C_ _I -> ( <. x , y >. e. A <-> <. x , y >. e. ( _I |` dom A ) ) ) |
25 |
24
|
alrimivv |
|- ( A C_ _I -> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I |` dom A ) ) ) |
26 |
|
reli |
|- Rel _I |
27 |
|
relss |
|- ( A C_ _I -> ( Rel _I -> Rel A ) ) |
28 |
26 27
|
mpi |
|- ( A C_ _I -> Rel A ) |
29 |
|
relres |
|- Rel ( _I |` dom A ) |
30 |
|
eqrel |
|- ( ( Rel A /\ Rel ( _I |` dom A ) ) -> ( A = ( _I |` dom A ) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I |` dom A ) ) ) ) |
31 |
28 29 30
|
sylancl |
|- ( A C_ _I -> ( A = ( _I |` dom A ) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. ( _I |` dom A ) ) ) ) |
32 |
25 31
|
mpbird |
|- ( A C_ _I -> A = ( _I |` dom A ) ) |
33 |
|
resss |
|- ( _I |` dom A ) C_ _I |
34 |
|
sseq1 |
|- ( A = ( _I |` dom A ) -> ( A C_ _I <-> ( _I |` dom A ) C_ _I ) ) |
35 |
33 34
|
mpbiri |
|- ( A = ( _I |` dom A ) -> A C_ _I ) |
36 |
32 35
|
impbii |
|- ( A C_ _I <-> A = ( _I |` dom A ) ) |