| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issect.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | issect.h |  |-  H = ( Hom ` C ) | 
						
							| 3 |  | issect.o |  |-  .x. = ( comp ` C ) | 
						
							| 4 |  | issect.i |  |-  .1. = ( Id ` C ) | 
						
							| 5 |  | issect.s |  |-  S = ( Sect ` C ) | 
						
							| 6 |  | issect.c |  |-  ( ph -> C e. Cat ) | 
						
							| 7 |  | issect.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | issect.y |  |-  ( ph -> Y e. B ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | sectfval |  |-  ( ph -> ( X S Y ) = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } ) | 
						
							| 10 | 9 | breqd |  |-  ( ph -> ( F ( X S Y ) G <-> F { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } G ) ) | 
						
							| 11 |  | oveq12 |  |-  ( ( g = G /\ f = F ) -> ( g ( <. X , Y >. .x. X ) f ) = ( G ( <. X , Y >. .x. X ) F ) ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( f = F /\ g = G ) -> ( g ( <. X , Y >. .x. X ) f ) = ( G ( <. X , Y >. .x. X ) F ) ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( ( f = F /\ g = G ) -> ( ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) | 
						
							| 14 |  | eqid |  |-  { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } = { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } | 
						
							| 15 | 13 14 | brab2a |  |-  ( F { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) | 
						
							| 16 |  | df-3an |  |-  ( ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) | 
						
							| 17 | 15 16 | bitr4i |  |-  ( F { <. f , g >. | ( ( f e. ( X H Y ) /\ g e. ( Y H X ) ) /\ ( g ( <. X , Y >. .x. X ) f ) = ( .1. ` X ) ) } G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) | 
						
							| 18 | 10 17 | bitrdi |  |-  ( ph -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) ) |