| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issect.b |
|- B = ( Base ` C ) |
| 2 |
|
issect.h |
|- H = ( Hom ` C ) |
| 3 |
|
issect.o |
|- .x. = ( comp ` C ) |
| 4 |
|
issect.i |
|- .1. = ( Id ` C ) |
| 5 |
|
issect.s |
|- S = ( Sect ` C ) |
| 6 |
|
issect.c |
|- ( ph -> C e. Cat ) |
| 7 |
|
issect.x |
|- ( ph -> X e. B ) |
| 8 |
|
issect.y |
|- ( ph -> Y e. B ) |
| 9 |
|
issect.f |
|- ( ph -> F e. ( X H Y ) ) |
| 10 |
|
issect.g |
|- ( ph -> G e. ( Y H X ) ) |
| 11 |
9 10
|
jca |
|- ( ph -> ( F e. ( X H Y ) /\ G e. ( Y H X ) ) ) |
| 12 |
1 2 3 4 5 6 7 8
|
issect |
|- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) ) |
| 13 |
|
df-3an |
|- ( ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) |
| 14 |
12 13
|
bitrdi |
|- ( ph -> ( F ( X S Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) ) |
| 15 |
11 14
|
mpbirand |
|- ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) |