Metamath Proof Explorer


Theorem issect2

Description: Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses issect.b
|- B = ( Base ` C )
issect.h
|- H = ( Hom ` C )
issect.o
|- .x. = ( comp ` C )
issect.i
|- .1. = ( Id ` C )
issect.s
|- S = ( Sect ` C )
issect.c
|- ( ph -> C e. Cat )
issect.x
|- ( ph -> X e. B )
issect.y
|- ( ph -> Y e. B )
issect.f
|- ( ph -> F e. ( X H Y ) )
issect.g
|- ( ph -> G e. ( Y H X ) )
Assertion issect2
|- ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) )

Proof

Step Hyp Ref Expression
1 issect.b
 |-  B = ( Base ` C )
2 issect.h
 |-  H = ( Hom ` C )
3 issect.o
 |-  .x. = ( comp ` C )
4 issect.i
 |-  .1. = ( Id ` C )
5 issect.s
 |-  S = ( Sect ` C )
6 issect.c
 |-  ( ph -> C e. Cat )
7 issect.x
 |-  ( ph -> X e. B )
8 issect.y
 |-  ( ph -> Y e. B )
9 issect.f
 |-  ( ph -> F e. ( X H Y ) )
10 issect.g
 |-  ( ph -> G e. ( Y H X ) )
11 9 10 jca
 |-  ( ph -> ( F e. ( X H Y ) /\ G e. ( Y H X ) ) )
12 1 2 3 4 5 6 7 8 issect
 |-  ( ph -> ( F ( X S Y ) G <-> ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) )
13 df-3an
 |-  ( ( F e. ( X H Y ) /\ G e. ( Y H X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) )
14 12 13 bitrdi
 |-  ( ph -> ( F ( X S Y ) G <-> ( ( F e. ( X H Y ) /\ G e. ( Y H X ) ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) )
15 11 14 mpbirand
 |-  ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) )