Metamath Proof Explorer


Theorem issetf

Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypothesis issetf.1
|- F/_ x A
Assertion issetf
|- ( A e. _V <-> E. x x = A )

Proof

Step Hyp Ref Expression
1 issetf.1
 |-  F/_ x A
2 isset
 |-  ( A e. _V <-> E. y y = A )
3 1 nfeq2
 |-  F/ x y = A
4 nfv
 |-  F/ y x = A
5 eqeq1
 |-  ( y = x -> ( y = A <-> x = A ) )
6 3 4 5 cbvexv1
 |-  ( E. y y = A <-> E. x x = A )
7 2 6 bitri
 |-  ( A e. _V <-> E. x x = A )