Metamath Proof Explorer


Theorem issetft

Description: Closed theorem form of isset that does not require x and A to be distinct. Extracted from the proof of vtoclgft . (Contributed by Wolf Lammen, 9-Apr-2025)

Ref Expression
Assertion issetft
|- ( F/_ x A -> ( A e. _V <-> E. x x = A ) )

Proof

Step Hyp Ref Expression
1 isset
 |-  ( A e. _V <-> E. y y = A )
2 nfv
 |-  F/ y F/_ x A
3 nfnfc1
 |-  F/ x F/_ x A
4 nfcvd
 |-  ( F/_ x A -> F/_ x y )
5 id
 |-  ( F/_ x A -> F/_ x A )
6 4 5 nfeqd
 |-  ( F/_ x A -> F/ x y = A )
7 6 nfnd
 |-  ( F/_ x A -> F/ x -. y = A )
8 nfvd
 |-  ( F/_ x A -> F/ y -. x = A )
9 eqeq1
 |-  ( y = x -> ( y = A <-> x = A ) )
10 9 notbid
 |-  ( y = x -> ( -. y = A <-> -. x = A ) )
11 10 a1i
 |-  ( F/_ x A -> ( y = x -> ( -. y = A <-> -. x = A ) ) )
12 2 3 7 8 11 cbv2w
 |-  ( F/_ x A -> ( A. y -. y = A <-> A. x -. x = A ) )
13 alnex
 |-  ( A. y -. y = A <-> -. E. y y = A )
14 alnex
 |-  ( A. x -. x = A <-> -. E. x x = A )
15 12 13 14 3bitr3g
 |-  ( F/_ x A -> ( -. E. y y = A <-> -. E. x x = A ) )
16 15 con4bid
 |-  ( F/_ x A -> ( E. y y = A <-> E. x x = A ) )
17 1 16 bitrid
 |-  ( F/_ x A -> ( A e. _V <-> E. x x = A ) )