Description: A way to say " A is a set" (inference form). (Contributed by NM, 24-Jun-1993) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isseti.1 | |- A e. _V |
|
| Assertion | isseti | |- E. x x = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | |- A e. _V |
|
| 2 | elissetv | |- ( A e. _V -> E. x x = A ) |
|
| 3 | 1 2 | ax-mp | |- E. x x = A |