Description: Lemma for elisset and isset . (Contributed by NM, 26-May-1993) Extract from the proof of isset . (Revised by WL, 2-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | issetlem.1 | |- x e. V |
|
Assertion | issetlem | |- ( A e. V <-> E. x x = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issetlem.1 | |- x e. V |
|
2 | dfclel | |- ( A e. V <-> E. x ( x = A /\ x e. V ) ) |
|
3 | 1 | biantru | |- ( x = A <-> ( x = A /\ x e. V ) ) |
4 | 3 | exbii | |- ( E. x x = A <-> E. x ( x = A /\ x e. V ) ) |
5 | 2 4 | bitr4i | |- ( A e. V <-> E. x x = A ) |