Metamath Proof Explorer


Theorem issetri

Description: A way to say " A is a set" (inference form). (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis issetri.1
|- E. x x = A
Assertion issetri
|- A e. _V

Proof

Step Hyp Ref Expression
1 issetri.1
 |-  E. x x = A
2 isset
 |-  ( A e. _V <-> E. x x = A )
3 1 2 mpbir
 |-  A e. _V