| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-slw |  |-  pSyl = ( p e. Prime , g e. Grp |-> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } ) | 
						
							| 2 | 1 | elmpocl |  |-  ( H e. ( P pSyl G ) -> ( P e. Prime /\ G e. Grp ) ) | 
						
							| 3 |  | simp1 |  |-  ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) -> P e. Prime ) | 
						
							| 4 |  | subgrcl |  |-  ( H e. ( SubGrp ` G ) -> G e. Grp ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) -> G e. Grp ) | 
						
							| 6 | 3 5 | jca |  |-  ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) -> ( P e. Prime /\ G e. Grp ) ) | 
						
							| 7 |  | simpr |  |-  ( ( p = P /\ g = G ) -> g = G ) | 
						
							| 8 | 7 | fveq2d |  |-  ( ( p = P /\ g = G ) -> ( SubGrp ` g ) = ( SubGrp ` G ) ) | 
						
							| 9 |  | simpl |  |-  ( ( p = P /\ g = G ) -> p = P ) | 
						
							| 10 | 7 | oveq1d |  |-  ( ( p = P /\ g = G ) -> ( g |`s k ) = ( G |`s k ) ) | 
						
							| 11 | 9 10 | breq12d |  |-  ( ( p = P /\ g = G ) -> ( p pGrp ( g |`s k ) <-> P pGrp ( G |`s k ) ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( ( p = P /\ g = G ) -> ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> ( h C_ k /\ P pGrp ( G |`s k ) ) ) ) | 
						
							| 13 | 12 | bibi1d |  |-  ( ( p = P /\ g = G ) -> ( ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) <-> ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) ) ) | 
						
							| 14 | 8 13 | raleqbidv |  |-  ( ( p = P /\ g = G ) -> ( A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) <-> A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) ) ) | 
						
							| 15 | 8 14 | rabeqbidv |  |-  ( ( p = P /\ g = G ) -> { h e. ( SubGrp ` g ) | A. k e. ( SubGrp ` g ) ( ( h C_ k /\ p pGrp ( g |`s k ) ) <-> h = k ) } = { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } ) | 
						
							| 16 |  | fvex |  |-  ( SubGrp ` G ) e. _V | 
						
							| 17 | 16 | rabex |  |-  { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } e. _V | 
						
							| 18 | 15 1 17 | ovmpoa |  |-  ( ( P e. Prime /\ G e. Grp ) -> ( P pSyl G ) = { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } ) | 
						
							| 19 | 18 | eleq2d |  |-  ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> H e. { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } ) ) | 
						
							| 20 |  | cleq1lem |  |-  ( h = H -> ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> ( H C_ k /\ P pGrp ( G |`s k ) ) ) ) | 
						
							| 21 |  | eqeq1 |  |-  ( h = H -> ( h = k <-> H = k ) ) | 
						
							| 22 | 20 21 | bibi12d |  |-  ( h = H -> ( ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) <-> ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) | 
						
							| 23 | 22 | ralbidv |  |-  ( h = H -> ( A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) <-> A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) | 
						
							| 24 | 23 | elrab |  |-  ( H e. { h e. ( SubGrp ` G ) | A. k e. ( SubGrp ` G ) ( ( h C_ k /\ P pGrp ( G |`s k ) ) <-> h = k ) } <-> ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) | 
						
							| 25 | 19 24 | bitrdi |  |-  ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) | 
						
							| 26 |  | simpl |  |-  ( ( P e. Prime /\ G e. Grp ) -> P e. Prime ) | 
						
							| 27 | 26 | biantrurd |  |-  ( ( P e. Prime /\ G e. Grp ) -> ( ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) <-> ( P e. Prime /\ ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) ) | 
						
							| 28 | 25 27 | bitrd |  |-  ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> ( P e. Prime /\ ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) ) | 
						
							| 29 |  | 3anass |  |-  ( ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) <-> ( P e. Prime /\ ( H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) | 
						
							| 30 | 28 29 | bitr4di |  |-  ( ( P e. Prime /\ G e. Grp ) -> ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) ) | 
						
							| 31 | 2 6 30 | pm5.21nii |  |-  ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |