Metamath Proof Explorer


Theorem isspth

Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion isspth
|- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) )

Proof

Step Hyp Ref Expression
1 spthsfval
 |-  ( SPaths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ Fun `' p ) }
2 cnveq
 |-  ( p = P -> `' p = `' P )
3 2 funeqd
 |-  ( p = P -> ( Fun `' p <-> Fun `' P ) )
4 3 adantl
 |-  ( ( f = F /\ p = P ) -> ( Fun `' p <-> Fun `' P ) )
5 reltrls
 |-  Rel ( Trails ` G )
6 1 4 5 brfvopabrbr
 |-  ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) )