Description: Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spthsfval | |- ( SPaths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ Fun `' p ) } |
|
2 | cnveq | |- ( p = P -> `' p = `' P ) |
|
3 | 2 | funeqd | |- ( p = P -> ( Fun `' p <-> Fun `' P ) ) |
4 | 3 | adantl | |- ( ( f = F /\ p = P ) -> ( Fun `' p <-> Fun `' P ) ) |
5 | reltrls | |- Rel ( Trails ` G ) |
|
6 | 1 4 5 | brfvopabrbr | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |