Step |
Hyp |
Ref |
Expression |
1 |
|
isspthonpth.v |
|- V = ( Vtx ` G ) |
2 |
1
|
isspthson |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) ) ) |
3 |
1
|
istrlson |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
4 |
3
|
adantr |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
5 |
|
spthispth |
|- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
6 |
|
pthistrl |
|- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
7 |
5 6
|
syl |
|- ( F ( SPaths ` G ) P -> F ( Trails ` G ) P ) |
8 |
7
|
adantl |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> F ( Trails ` G ) P ) |
9 |
8
|
biantrud |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( A ( WalksOn ` G ) B ) P /\ F ( Trails ` G ) P ) ) ) |
10 |
|
spthiswlk |
|- ( F ( SPaths ` G ) P -> F ( Walks ` G ) P ) |
11 |
10
|
adantl |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> F ( Walks ` G ) P ) |
12 |
1
|
iswlkon |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
13 |
|
3anass |
|- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
14 |
12 13
|
bitrdi |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) |
15 |
14
|
adantr |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( F ( Walks ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) |
16 |
11 15
|
mpbirand |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( WalksOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
17 |
4 9 16
|
3bitr2d |
|- ( ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) /\ F ( SPaths ` G ) P ) -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
18 |
17
|
ex |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( SPaths ` G ) P -> ( F ( A ( TrailsOn ` G ) B ) P <-> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) ) |
19 |
18
|
pm5.32rd |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) ) ) |
20 |
|
3anass |
|- ( ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
21 |
|
ancom |
|- ( ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) <-> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) ) |
22 |
20 21
|
bitr2i |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) /\ F ( SPaths ` G ) P ) <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
23 |
19 22
|
bitrdi |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( ( F ( A ( TrailsOn ` G ) B ) P /\ F ( SPaths ` G ) P ) <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
24 |
2 23
|
bitrd |
|- ( ( ( A e. V /\ B e. V ) /\ ( F e. W /\ P e. Z ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |