Step |
Hyp |
Ref |
Expression |
1 |
|
isnsqf |
|- ( A e. NN -> ( ( mmu ` A ) = 0 <-> E. p e. Prime ( p ^ 2 ) || A ) ) |
2 |
1
|
necon3abid |
|- ( A e. NN -> ( ( mmu ` A ) =/= 0 <-> -. E. p e. Prime ( p ^ 2 ) || A ) ) |
3 |
|
ralnex |
|- ( A. p e. Prime -. ( p ^ 2 ) || A <-> -. E. p e. Prime ( p ^ 2 ) || A ) |
4 |
|
1nn0 |
|- 1 e. NN0 |
5 |
|
pccl |
|- ( ( p e. Prime /\ A e. NN ) -> ( p pCnt A ) e. NN0 ) |
6 |
5
|
ancoms |
|- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
7 |
|
nn0ltp1le |
|- ( ( 1 e. NN0 /\ ( p pCnt A ) e. NN0 ) -> ( 1 < ( p pCnt A ) <-> ( 1 + 1 ) <_ ( p pCnt A ) ) ) |
8 |
4 6 7
|
sylancr |
|- ( ( A e. NN /\ p e. Prime ) -> ( 1 < ( p pCnt A ) <-> ( 1 + 1 ) <_ ( p pCnt A ) ) ) |
9 |
|
1re |
|- 1 e. RR |
10 |
6
|
nn0red |
|- ( ( A e. NN /\ p e. Prime ) -> ( p pCnt A ) e. RR ) |
11 |
|
ltnle |
|- ( ( 1 e. RR /\ ( p pCnt A ) e. RR ) -> ( 1 < ( p pCnt A ) <-> -. ( p pCnt A ) <_ 1 ) ) |
12 |
9 10 11
|
sylancr |
|- ( ( A e. NN /\ p e. Prime ) -> ( 1 < ( p pCnt A ) <-> -. ( p pCnt A ) <_ 1 ) ) |
13 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
14 |
13
|
breq1i |
|- ( 2 <_ ( p pCnt A ) <-> ( 1 + 1 ) <_ ( p pCnt A ) ) |
15 |
|
id |
|- ( p e. Prime -> p e. Prime ) |
16 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
17 |
|
2nn0 |
|- 2 e. NN0 |
18 |
|
pcdvdsb |
|- ( ( p e. Prime /\ A e. ZZ /\ 2 e. NN0 ) -> ( 2 <_ ( p pCnt A ) <-> ( p ^ 2 ) || A ) ) |
19 |
17 18
|
mp3an3 |
|- ( ( p e. Prime /\ A e. ZZ ) -> ( 2 <_ ( p pCnt A ) <-> ( p ^ 2 ) || A ) ) |
20 |
15 16 19
|
syl2anr |
|- ( ( A e. NN /\ p e. Prime ) -> ( 2 <_ ( p pCnt A ) <-> ( p ^ 2 ) || A ) ) |
21 |
14 20
|
bitr3id |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( 1 + 1 ) <_ ( p pCnt A ) <-> ( p ^ 2 ) || A ) ) |
22 |
8 12 21
|
3bitr3d |
|- ( ( A e. NN /\ p e. Prime ) -> ( -. ( p pCnt A ) <_ 1 <-> ( p ^ 2 ) || A ) ) |
23 |
22
|
con1bid |
|- ( ( A e. NN /\ p e. Prime ) -> ( -. ( p ^ 2 ) || A <-> ( p pCnt A ) <_ 1 ) ) |
24 |
23
|
ralbidva |
|- ( A e. NN -> ( A. p e. Prime -. ( p ^ 2 ) || A <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |
25 |
3 24
|
bitr3id |
|- ( A e. NN -> ( -. E. p e. Prime ( p ^ 2 ) || A <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |
26 |
2 25
|
bitrd |
|- ( A e. NN -> ( ( mmu ` A ) =/= 0 <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |