| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issrg.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | issrg.g |  |-  G = ( mulGrp ` R ) | 
						
							| 3 |  | issrg.p |  |-  .+ = ( +g ` R ) | 
						
							| 4 |  | issrg.t |  |-  .x. = ( .r ` R ) | 
						
							| 5 |  | issrg.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 6 | 2 | eleq1i |  |-  ( G e. Mnd <-> ( mulGrp ` R ) e. Mnd ) | 
						
							| 7 | 6 | bicomi |  |-  ( ( mulGrp ` R ) e. Mnd <-> G e. Mnd ) | 
						
							| 8 | 1 | fvexi |  |-  B e. _V | 
						
							| 9 | 3 | fvexi |  |-  .+ e. _V | 
						
							| 10 | 4 | fvexi |  |-  .x. e. _V | 
						
							| 11 | 10 | a1i |  |-  ( ( b = B /\ p = .+ ) -> .x. e. _V ) | 
						
							| 12 | 5 | fvexi |  |-  .0. e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ( ( b = B /\ p = .+ ) /\ t = .x. ) -> .0. e. _V ) | 
						
							| 14 |  | simplll |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> b = B ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> t = .x. ) | 
						
							| 16 |  | eqidd |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> x = x ) | 
						
							| 17 |  | simpllr |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> p = .+ ) | 
						
							| 18 | 17 | oveqd |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( y p z ) = ( y .+ z ) ) | 
						
							| 19 | 15 16 18 | oveq123d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t ( y p z ) ) = ( x .x. ( y .+ z ) ) ) | 
						
							| 20 | 15 | oveqd |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t y ) = ( x .x. y ) ) | 
						
							| 21 | 15 | oveqd |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t z ) = ( x .x. z ) ) | 
						
							| 22 | 17 20 21 | oveq123d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t y ) p ( x t z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) | 
						
							| 23 | 19 22 | eqeq12d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) <-> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) ) | 
						
							| 24 | 17 | oveqd |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x p y ) = ( x .+ y ) ) | 
						
							| 25 |  | eqidd |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> z = z ) | 
						
							| 26 | 15 24 25 | oveq123d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x p y ) t z ) = ( ( x .+ y ) .x. z ) ) | 
						
							| 27 | 15 | oveqd |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( y t z ) = ( y .x. z ) ) | 
						
							| 28 | 17 21 27 | oveq123d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t z ) p ( y t z ) ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) | 
						
							| 29 | 26 28 | eqeq12d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) <-> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) | 
						
							| 30 | 23 29 | anbi12d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) | 
						
							| 31 | 14 30 | raleqbidv |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) | 
						
							| 32 | 14 31 | raleqbidv |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> n = .0. ) | 
						
							| 34 | 15 33 16 | oveq123d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( n t x ) = ( .0. .x. x ) ) | 
						
							| 35 | 34 33 | eqeq12d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( n t x ) = n <-> ( .0. .x. x ) = .0. ) ) | 
						
							| 36 | 15 16 33 | oveq123d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t n ) = ( x .x. .0. ) ) | 
						
							| 37 | 36 33 | eqeq12d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t n ) = n <-> ( x .x. .0. ) = .0. ) ) | 
						
							| 38 | 35 37 | anbi12d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( n t x ) = n /\ ( x t n ) = n ) <-> ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) | 
						
							| 39 | 32 38 | anbi12d |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) | 
						
							| 40 | 14 39 | raleqbidv |  |-  ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) | 
						
							| 41 | 13 40 | sbcied |  |-  ( ( ( b = B /\ p = .+ ) /\ t = .x. ) -> ( [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) | 
						
							| 42 | 11 41 | sbcied |  |-  ( ( b = B /\ p = .+ ) -> ( [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) | 
						
							| 43 | 8 9 42 | sbc2ie |  |-  ( [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) | 
						
							| 44 | 7 43 | anbi12i |  |-  ( ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) <-> ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) | 
						
							| 45 | 44 | anbi2i |  |-  ( ( R e. CMnd /\ ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) <-> ( R e. CMnd /\ ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) ) | 
						
							| 46 |  | fveq2 |  |-  ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) | 
						
							| 47 | 46 | eleq1d |  |-  ( r = R -> ( ( mulGrp ` r ) e. Mnd <-> ( mulGrp ` R ) e. Mnd ) ) | 
						
							| 48 |  | fveq2 |  |-  ( r = R -> ( Base ` r ) = ( Base ` R ) ) | 
						
							| 49 | 48 1 | eqtr4di |  |-  ( r = R -> ( Base ` r ) = B ) | 
						
							| 50 |  | fveq2 |  |-  ( r = R -> ( +g ` r ) = ( +g ` R ) ) | 
						
							| 51 | 50 3 | eqtr4di |  |-  ( r = R -> ( +g ` r ) = .+ ) | 
						
							| 52 |  | fveq2 |  |-  ( r = R -> ( .r ` r ) = ( .r ` R ) ) | 
						
							| 53 | 52 4 | eqtr4di |  |-  ( r = R -> ( .r ` r ) = .x. ) | 
						
							| 54 |  | fveq2 |  |-  ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) | 
						
							| 55 | 54 5 | eqtr4di |  |-  ( r = R -> ( 0g ` r ) = .0. ) | 
						
							| 56 | 55 | sbceq1d |  |-  ( r = R -> ( [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) | 
						
							| 57 | 53 56 | sbceqbid |  |-  ( r = R -> ( [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) | 
						
							| 58 | 51 57 | sbceqbid |  |-  ( r = R -> ( [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) | 
						
							| 59 | 49 58 | sbceqbid |  |-  ( r = R -> ( [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) | 
						
							| 60 | 47 59 | anbi12d |  |-  ( r = R -> ( ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) <-> ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) ) | 
						
							| 61 |  | df-srg |  |-  SRing = { r e. CMnd | ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) } | 
						
							| 62 | 60 61 | elrab2 |  |-  ( R e. SRing <-> ( R e. CMnd /\ ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) ) | 
						
							| 63 |  | 3anass |  |-  ( ( R e. CMnd /\ G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) <-> ( R e. CMnd /\ ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) ) | 
						
							| 64 | 45 62 63 | 3bitr4i |  |-  ( R e. SRing <-> ( R e. CMnd /\ G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |