Step |
Hyp |
Ref |
Expression |
1 |
|
srgidm.b |
|- B = ( Base ` R ) |
2 |
|
srgidm.t |
|- .x. = ( .r ` R ) |
3 |
|
srgidm.u |
|- .1. = ( 1r ` R ) |
4 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
5 |
4 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
6 |
4 3
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
7 |
4 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
8 |
1 2
|
srgideu |
|- ( R e. SRing -> E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) |
9 |
|
reurex |
|- ( E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) |
10 |
8 9
|
syl |
|- ( R e. SRing -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) |
11 |
5 6 7 10
|
ismgmid |
|- ( R e. SRing -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) ) |