| Step | Hyp | Ref | Expression | 
						
							| 1 |  | srgidm.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | srgidm.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | srgidm.u |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 5 | 4 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 6 | 4 3 | ringidval |  |-  .1. = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 7 | 4 2 | mgpplusg |  |-  .x. = ( +g ` ( mulGrp ` R ) ) | 
						
							| 8 | 1 2 | srgideu |  |-  ( R e. SRing -> E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) | 
						
							| 9 |  | reurex |  |-  ( E! y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( R e. SRing -> E. y e. B A. x e. B ( ( y .x. x ) = x /\ ( x .x. y ) = x ) ) | 
						
							| 11 | 5 6 7 10 | ismgmid |  |-  ( R e. SRing -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) <-> .1. = I ) ) |