| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issrng.o |  |-  O = ( oppR ` R ) | 
						
							| 2 |  | issrng.i |  |-  .* = ( *rf ` R ) | 
						
							| 3 |  | df-srng |  |-  *Ring = { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } | 
						
							| 4 | 3 | eleq2i |  |-  ( R e. *Ring <-> R e. { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } ) | 
						
							| 5 |  | rhmrcl1 |  |-  ( .* e. ( R RingHom O ) -> R e. Ring ) | 
						
							| 6 | 5 | adantr |  |-  ( ( .* e. ( R RingHom O ) /\ .* = `' .* ) -> R e. Ring ) | 
						
							| 7 |  | fvexd |  |-  ( r = R -> ( *rf ` r ) e. _V ) | 
						
							| 8 |  | id |  |-  ( i = ( *rf ` r ) -> i = ( *rf ` r ) ) | 
						
							| 9 |  | fveq2 |  |-  ( r = R -> ( *rf ` r ) = ( *rf ` R ) ) | 
						
							| 10 | 9 2 | eqtr4di |  |-  ( r = R -> ( *rf ` r ) = .* ) | 
						
							| 11 | 8 10 | sylan9eqr |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> i = .* ) | 
						
							| 12 |  | simpl |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> r = R ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> ( oppR ` r ) = ( oppR ` R ) ) | 
						
							| 14 | 13 1 | eqtr4di |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> ( oppR ` r ) = O ) | 
						
							| 15 | 12 14 | oveq12d |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> ( r RingHom ( oppR ` r ) ) = ( R RingHom O ) ) | 
						
							| 16 | 11 15 | eleq12d |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> ( i e. ( r RingHom ( oppR ` r ) ) <-> .* e. ( R RingHom O ) ) ) | 
						
							| 17 | 11 | cnveqd |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> `' i = `' .* ) | 
						
							| 18 | 11 17 | eqeq12d |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> ( i = `' i <-> .* = `' .* ) ) | 
						
							| 19 | 16 18 | anbi12d |  |-  ( ( r = R /\ i = ( *rf ` r ) ) -> ( ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) ) | 
						
							| 20 | 7 19 | sbcied |  |-  ( r = R -> ( [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) ) | 
						
							| 21 | 6 20 | elab3 |  |-  ( R e. { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) | 
						
							| 22 | 4 21 | bitri |  |-  ( R e. *Ring <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) |