Step |
Hyp |
Ref |
Expression |
1 |
|
issrng.o |
|- O = ( oppR ` R ) |
2 |
|
issrng.i |
|- .* = ( *rf ` R ) |
3 |
|
df-srng |
|- *Ring = { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } |
4 |
3
|
eleq2i |
|- ( R e. *Ring <-> R e. { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } ) |
5 |
|
rhmrcl1 |
|- ( .* e. ( R RingHom O ) -> R e. Ring ) |
6 |
5
|
adantr |
|- ( ( .* e. ( R RingHom O ) /\ .* = `' .* ) -> R e. Ring ) |
7 |
|
fvexd |
|- ( r = R -> ( *rf ` r ) e. _V ) |
8 |
|
id |
|- ( i = ( *rf ` r ) -> i = ( *rf ` r ) ) |
9 |
|
fveq2 |
|- ( r = R -> ( *rf ` r ) = ( *rf ` R ) ) |
10 |
9 2
|
eqtr4di |
|- ( r = R -> ( *rf ` r ) = .* ) |
11 |
8 10
|
sylan9eqr |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> i = .* ) |
12 |
|
simpl |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> r = R ) |
13 |
12
|
fveq2d |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> ( oppR ` r ) = ( oppR ` R ) ) |
14 |
13 1
|
eqtr4di |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> ( oppR ` r ) = O ) |
15 |
12 14
|
oveq12d |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> ( r RingHom ( oppR ` r ) ) = ( R RingHom O ) ) |
16 |
11 15
|
eleq12d |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> ( i e. ( r RingHom ( oppR ` r ) ) <-> .* e. ( R RingHom O ) ) ) |
17 |
11
|
cnveqd |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> `' i = `' .* ) |
18 |
11 17
|
eqeq12d |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> ( i = `' i <-> .* = `' .* ) ) |
19 |
16 18
|
anbi12d |
|- ( ( r = R /\ i = ( *rf ` r ) ) -> ( ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) ) |
20 |
7 19
|
sbcied |
|- ( r = R -> ( [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) ) |
21 |
6 20
|
elab3 |
|- ( R e. { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) |
22 |
4 21
|
bitri |
|- ( R e. *Ring <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) |