| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isssp.g |  |-  G = ( +v ` U ) | 
						
							| 2 |  | isssp.f |  |-  F = ( +v ` W ) | 
						
							| 3 |  | isssp.s |  |-  S = ( .sOLD ` U ) | 
						
							| 4 |  | isssp.r |  |-  R = ( .sOLD ` W ) | 
						
							| 5 |  | isssp.n |  |-  N = ( normCV ` U ) | 
						
							| 6 |  | isssp.m |  |-  M = ( normCV ` W ) | 
						
							| 7 |  | isssp.h |  |-  H = ( SubSp ` U ) | 
						
							| 8 | 1 3 5 7 | sspval |  |-  ( U e. NrmCVec -> H = { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) | 
						
							| 9 | 8 | eleq2d |  |-  ( U e. NrmCVec -> ( W e. H <-> W e. { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } ) ) | 
						
							| 10 |  | fveq2 |  |-  ( w = W -> ( +v ` w ) = ( +v ` W ) ) | 
						
							| 11 | 10 2 | eqtr4di |  |-  ( w = W -> ( +v ` w ) = F ) | 
						
							| 12 | 11 | sseq1d |  |-  ( w = W -> ( ( +v ` w ) C_ G <-> F C_ G ) ) | 
						
							| 13 |  | fveq2 |  |-  ( w = W -> ( .sOLD ` w ) = ( .sOLD ` W ) ) | 
						
							| 14 | 13 4 | eqtr4di |  |-  ( w = W -> ( .sOLD ` w ) = R ) | 
						
							| 15 | 14 | sseq1d |  |-  ( w = W -> ( ( .sOLD ` w ) C_ S <-> R C_ S ) ) | 
						
							| 16 |  | fveq2 |  |-  ( w = W -> ( normCV ` w ) = ( normCV ` W ) ) | 
						
							| 17 | 16 6 | eqtr4di |  |-  ( w = W -> ( normCV ` w ) = M ) | 
						
							| 18 | 17 | sseq1d |  |-  ( w = W -> ( ( normCV ` w ) C_ N <-> M C_ N ) ) | 
						
							| 19 | 12 15 18 | 3anbi123d |  |-  ( w = W -> ( ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) <-> ( F C_ G /\ R C_ S /\ M C_ N ) ) ) | 
						
							| 20 | 19 | elrab |  |-  ( W e. { w e. NrmCVec | ( ( +v ` w ) C_ G /\ ( .sOLD ` w ) C_ S /\ ( normCV ` w ) C_ N ) } <-> ( W e. NrmCVec /\ ( F C_ G /\ R C_ S /\ M C_ N ) ) ) | 
						
							| 21 | 9 20 | bitrdi |  |-  ( U e. NrmCVec -> ( W e. H <-> ( W e. NrmCVec /\ ( F C_ G /\ R C_ S /\ M C_ N ) ) ) ) |