Step |
Hyp |
Ref |
Expression |
1 |
|
issubassa2.a |
|- A = ( algSc ` W ) |
2 |
|
issubassa2.l |
|- L = ( LSubSp ` W ) |
3 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
4 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
5 |
1 3 4
|
rnascl |
|- ( W e. AssAlg -> ran A = ( ( LSpan ` W ) ` { ( 1r ` W ) } ) ) |
6 |
5
|
ad2antrr |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ran A = ( ( LSpan ` W ) ` { ( 1r ` W ) } ) ) |
7 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
8 |
7
|
ad2antrr |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> W e. LMod ) |
9 |
|
simpr |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> S e. L ) |
10 |
3
|
subrg1cl |
|- ( S e. ( SubRing ` W ) -> ( 1r ` W ) e. S ) |
11 |
10
|
ad2antlr |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ( 1r ` W ) e. S ) |
12 |
2 4 8 9 11
|
lspsnel5a |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ( ( LSpan ` W ) ` { ( 1r ` W ) } ) C_ S ) |
13 |
6 12
|
eqsstrd |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ran A C_ S ) |
14 |
|
subrgsubg |
|- ( S e. ( SubRing ` W ) -> S e. ( SubGrp ` W ) ) |
15 |
14
|
ad2antlr |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S e. ( SubGrp ` W ) ) |
16 |
|
simplll |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> W e. AssAlg ) |
17 |
|
simprl |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
18 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
19 |
18
|
subrgss |
|- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S C_ ( Base ` W ) ) |
21 |
20
|
sselda |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ y e. S ) -> y e. ( Base ` W ) ) |
22 |
21
|
adantrl |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> y e. ( Base ` W ) ) |
23 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
24 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
25 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
26 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
27 |
1 23 24 18 25 26
|
asclmul1 |
|- ( ( W e. AssAlg /\ x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) -> ( ( A ` x ) ( .r ` W ) y ) = ( x ( .s ` W ) y ) ) |
28 |
16 17 22 27
|
syl3anc |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( ( A ` x ) ( .r ` W ) y ) = ( x ( .s ` W ) y ) ) |
29 |
|
simpllr |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> S e. ( SubRing ` W ) ) |
30 |
|
simplr |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ran A C_ S ) |
31 |
1 23 24
|
asclfn |
|- A Fn ( Base ` ( Scalar ` W ) ) |
32 |
31
|
a1i |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> A Fn ( Base ` ( Scalar ` W ) ) ) |
33 |
|
fnfvelrn |
|- ( ( A Fn ( Base ` ( Scalar ` W ) ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. ran A ) |
34 |
32 33
|
sylan |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. ran A ) |
35 |
30 34
|
sseldd |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. S ) |
36 |
35
|
adantrr |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( A ` x ) e. S ) |
37 |
|
simprr |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> y e. S ) |
38 |
25
|
subrgmcl |
|- ( ( S e. ( SubRing ` W ) /\ ( A ` x ) e. S /\ y e. S ) -> ( ( A ` x ) ( .r ` W ) y ) e. S ) |
39 |
29 36 37 38
|
syl3anc |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( ( A ` x ) ( .r ` W ) y ) e. S ) |
40 |
28 39
|
eqeltrrd |
|- ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( x ( .s ` W ) y ) e. S ) |
41 |
40
|
ralrimivva |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) |
42 |
23 24 18 26 2
|
islss4 |
|- ( W e. LMod -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) |
43 |
7 42
|
syl |
|- ( W e. AssAlg -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) |
44 |
43
|
ad2antrr |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) |
45 |
15 41 44
|
mpbir2and |
|- ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S e. L ) |
46 |
13 45
|
impbida |
|- ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) -> ( S e. L <-> ran A C_ S ) ) |