| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubassa2.a |  |-  A = ( algSc ` W ) | 
						
							| 2 |  | issubassa2.l |  |-  L = ( LSubSp ` W ) | 
						
							| 3 |  | eqid |  |-  ( 1r ` W ) = ( 1r ` W ) | 
						
							| 4 |  | eqid |  |-  ( LSpan ` W ) = ( LSpan ` W ) | 
						
							| 5 | 1 3 4 | rnascl |  |-  ( W e. AssAlg -> ran A = ( ( LSpan ` W ) ` { ( 1r ` W ) } ) ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ran A = ( ( LSpan ` W ) ` { ( 1r ` W ) } ) ) | 
						
							| 7 |  | assalmod |  |-  ( W e. AssAlg -> W e. LMod ) | 
						
							| 8 | 7 | ad2antrr |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> W e. LMod ) | 
						
							| 9 |  | simpr |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> S e. L ) | 
						
							| 10 | 3 | subrg1cl |  |-  ( S e. ( SubRing ` W ) -> ( 1r ` W ) e. S ) | 
						
							| 11 | 10 | ad2antlr |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ( 1r ` W ) e. S ) | 
						
							| 12 | 2 4 8 9 11 | ellspsn5 |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ( ( LSpan ` W ) ` { ( 1r ` W ) } ) C_ S ) | 
						
							| 13 | 6 12 | eqsstrd |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ S e. L ) -> ran A C_ S ) | 
						
							| 14 |  | subrgsubg |  |-  ( S e. ( SubRing ` W ) -> S e. ( SubGrp ` W ) ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S e. ( SubGrp ` W ) ) | 
						
							| 16 |  | simplll |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> W e. AssAlg ) | 
						
							| 17 |  | simprl |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 19 | 18 | subrgss |  |-  ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) | 
						
							| 20 | 19 | ad2antlr |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S C_ ( Base ` W ) ) | 
						
							| 21 | 20 | sselda |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ y e. S ) -> y e. ( Base ` W ) ) | 
						
							| 22 | 21 | adantrl |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> y e. ( Base ` W ) ) | 
						
							| 23 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 24 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 25 |  | eqid |  |-  ( .r ` W ) = ( .r ` W ) | 
						
							| 26 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 27 | 1 23 24 18 25 26 | asclmul1 |  |-  ( ( W e. AssAlg /\ x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) -> ( ( A ` x ) ( .r ` W ) y ) = ( x ( .s ` W ) y ) ) | 
						
							| 28 | 16 17 22 27 | syl3anc |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( ( A ` x ) ( .r ` W ) y ) = ( x ( .s ` W ) y ) ) | 
						
							| 29 |  | simpllr |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> S e. ( SubRing ` W ) ) | 
						
							| 30 |  | simplr |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ran A C_ S ) | 
						
							| 31 | 1 23 24 | asclfn |  |-  A Fn ( Base ` ( Scalar ` W ) ) | 
						
							| 32 | 31 | a1i |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> A Fn ( Base ` ( Scalar ` W ) ) ) | 
						
							| 33 |  | fnfvelrn |  |-  ( ( A Fn ( Base ` ( Scalar ` W ) ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. ran A ) | 
						
							| 34 | 32 33 | sylan |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. ran A ) | 
						
							| 35 | 30 34 | sseldd |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( A ` x ) e. S ) | 
						
							| 36 | 35 | adantrr |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( A ` x ) e. S ) | 
						
							| 37 |  | simprr |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> y e. S ) | 
						
							| 38 | 25 | subrgmcl |  |-  ( ( S e. ( SubRing ` W ) /\ ( A ` x ) e. S /\ y e. S ) -> ( ( A ` x ) ( .r ` W ) y ) e. S ) | 
						
							| 39 | 29 36 37 38 | syl3anc |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( ( A ` x ) ( .r ` W ) y ) e. S ) | 
						
							| 40 | 28 39 | eqeltrrd |  |-  ( ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. S ) ) -> ( x ( .s ` W ) y ) e. S ) | 
						
							| 41 | 40 | ralrimivva |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) | 
						
							| 42 | 23 24 18 26 2 | islss4 |  |-  ( W e. LMod -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) | 
						
							| 43 | 7 42 | syl |  |-  ( W e. AssAlg -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) | 
						
							| 44 | 43 | ad2antrr |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> ( S e. L <-> ( S e. ( SubGrp ` W ) /\ A. x e. ( Base ` ( Scalar ` W ) ) A. y e. S ( x ( .s ` W ) y ) e. S ) ) ) | 
						
							| 45 | 15 41 44 | mpbir2and |  |-  ( ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) /\ ran A C_ S ) -> S e. L ) | 
						
							| 46 | 13 45 | impbida |  |-  ( ( W e. AssAlg /\ S e. ( SubRing ` W ) ) -> ( S e. L <-> ran A C_ S ) ) |