Step |
Hyp |
Ref |
Expression |
1 |
|
issubassa.s |
|- S = ( W |`s A ) |
2 |
|
issubassa.l |
|- L = ( LSubSp ` W ) |
3 |
1
|
subrgbas |
|- ( A e. ( SubRing ` W ) -> A = ( Base ` S ) ) |
4 |
3
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A = ( Base ` S ) ) |
5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
6 |
1 5
|
resssca |
|- ( A e. ( SubRing ` W ) -> ( Scalar ` W ) = ( Scalar ` S ) ) |
7 |
6
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Scalar ` W ) = ( Scalar ` S ) ) |
8 |
|
eqidd |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
9 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
10 |
1 9
|
ressvsca |
|- ( A e. ( SubRing ` W ) -> ( .s ` W ) = ( .s ` S ) ) |
11 |
10
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .s ` W ) = ( .s ` S ) ) |
12 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
13 |
1 12
|
ressmulr |
|- ( A e. ( SubRing ` W ) -> ( .r ` W ) = ( .r ` S ) ) |
14 |
13
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .r ` W ) = ( .r ` S ) ) |
15 |
|
assalmod |
|- ( W e. AssAlg -> W e. LMod ) |
16 |
|
simpr |
|- ( ( A e. ( SubRing ` W ) /\ A e. L ) -> A e. L ) |
17 |
1 2
|
lsslmod |
|- ( ( W e. LMod /\ A e. L ) -> S e. LMod ) |
18 |
15 16 17
|
syl2an |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. LMod ) |
19 |
1
|
subrgring |
|- ( A e. ( SubRing ` W ) -> S e. Ring ) |
20 |
19
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. Ring ) |
21 |
5
|
assasca |
|- ( W e. AssAlg -> ( Scalar ` W ) e. CRing ) |
22 |
21
|
adantr |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Scalar ` W ) e. CRing ) |
23 |
|
idd |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) |
24 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
25 |
24
|
subrgss |
|- ( A e. ( SubRing ` W ) -> A C_ ( Base ` W ) ) |
26 |
25
|
ad2antrl |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A C_ ( Base ` W ) ) |
27 |
26
|
sseld |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( y e. A -> y e. ( Base ` W ) ) ) |
28 |
26
|
sseld |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( z e. A -> z e. ( Base ` W ) ) ) |
29 |
23 27 28
|
3anim123d |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) ) |
30 |
29
|
imp |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) |
31 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
32 |
24 5 31 9 12
|
assaass |
|- ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
33 |
32
|
adantlr |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
34 |
30 33
|
syldan |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
35 |
24 5 31 9 12
|
assaassr |
|- ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
36 |
35
|
adantlr |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
37 |
30 36
|
syldan |
|- ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) |
38 |
4 7 8 11 14 18 20 22 34 37
|
isassad |
|- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. AssAlg ) |