| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issubassa.s |  |-  S = ( W |`s A ) | 
						
							| 2 |  | issubassa.l |  |-  L = ( LSubSp ` W ) | 
						
							| 3 | 1 | subrgbas |  |-  ( A e. ( SubRing ` W ) -> A = ( Base ` S ) ) | 
						
							| 4 | 3 | ad2antrl |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A = ( Base ` S ) ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 6 | 1 5 | resssca |  |-  ( A e. ( SubRing ` W ) -> ( Scalar ` W ) = ( Scalar ` S ) ) | 
						
							| 7 | 6 | ad2antrl |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Scalar ` W ) = ( Scalar ` S ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) | 
						
							| 9 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 10 | 1 9 | ressvsca |  |-  ( A e. ( SubRing ` W ) -> ( .s ` W ) = ( .s ` S ) ) | 
						
							| 11 | 10 | ad2antrl |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .s ` W ) = ( .s ` S ) ) | 
						
							| 12 |  | eqid |  |-  ( .r ` W ) = ( .r ` W ) | 
						
							| 13 | 1 12 | ressmulr |  |-  ( A e. ( SubRing ` W ) -> ( .r ` W ) = ( .r ` S ) ) | 
						
							| 14 | 13 | ad2antrl |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( .r ` W ) = ( .r ` S ) ) | 
						
							| 15 |  | assalmod |  |-  ( W e. AssAlg -> W e. LMod ) | 
						
							| 16 |  | simpr |  |-  ( ( A e. ( SubRing ` W ) /\ A e. L ) -> A e. L ) | 
						
							| 17 | 1 2 | lsslmod |  |-  ( ( W e. LMod /\ A e. L ) -> S e. LMod ) | 
						
							| 18 | 15 16 17 | syl2an |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. LMod ) | 
						
							| 19 | 1 | subrgring |  |-  ( A e. ( SubRing ` W ) -> S e. Ring ) | 
						
							| 20 | 19 | ad2antrl |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. Ring ) | 
						
							| 21 |  | idd |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 23 | 22 | subrgss |  |-  ( A e. ( SubRing ` W ) -> A C_ ( Base ` W ) ) | 
						
							| 24 | 23 | ad2antrl |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> A C_ ( Base ` W ) ) | 
						
							| 25 | 24 | sseld |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( y e. A -> y e. ( Base ` W ) ) ) | 
						
							| 26 | 24 | sseld |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( z e. A -> z e. ( Base ` W ) ) ) | 
						
							| 27 | 21 25 26 | 3anim123d |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> ( ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) | 
						
							| 29 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 30 | 22 5 29 9 12 | assaass |  |-  ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) | 
						
							| 31 | 30 | adantlr |  |-  ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) | 
						
							| 32 | 28 31 | syldan |  |-  ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( ( x ( .s ` W ) y ) ( .r ` W ) z ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) | 
						
							| 33 | 22 5 29 9 12 | assaassr |  |-  ( ( W e. AssAlg /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) | 
						
							| 34 | 33 | adantlr |  |-  ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) /\ z e. ( Base ` W ) ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) | 
						
							| 35 | 28 34 | syldan |  |-  ( ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. A /\ z e. A ) ) -> ( y ( .r ` W ) ( x ( .s ` W ) z ) ) = ( x ( .s ` W ) ( y ( .r ` W ) z ) ) ) | 
						
							| 36 | 4 7 8 11 14 18 20 32 35 | isassad |  |-  ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. AssAlg ) |