Step |
Hyp |
Ref |
Expression |
1 |
|
issubdrg.s |
|- S = ( R |`s A ) |
2 |
|
issubdrg.z |
|- .0. = ( 0g ` R ) |
3 |
|
issubdrg.i |
|- I = ( invr ` R ) |
4 |
|
simpllr |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> A e. ( SubRing ` R ) ) |
5 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
6 |
4 5
|
syl |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> S e. Ring ) |
7 |
|
simpr |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( A \ { .0. } ) ) |
8 |
|
eldifsn |
|- ( x e. ( A \ { .0. } ) <-> ( x e. A /\ x =/= .0. ) ) |
9 |
7 8
|
sylib |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( x e. A /\ x =/= .0. ) ) |
10 |
9
|
simpld |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. A ) |
11 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
12 |
4 11
|
syl |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> A = ( Base ` S ) ) |
13 |
10 12
|
eleqtrd |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( Base ` S ) ) |
14 |
9
|
simprd |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x =/= .0. ) |
15 |
1 2
|
subrg0 |
|- ( A e. ( SubRing ` R ) -> .0. = ( 0g ` S ) ) |
16 |
4 15
|
syl |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> .0. = ( 0g ` S ) ) |
17 |
14 16
|
neeqtrd |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x =/= ( 0g ` S ) ) |
18 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
19 |
|
eqid |
|- ( Unit ` S ) = ( Unit ` S ) |
20 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
21 |
18 19 20
|
drngunit |
|- ( S e. DivRing -> ( x e. ( Unit ` S ) <-> ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) ) |
22 |
21
|
ad2antlr |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) ) |
23 |
13 17 22
|
mpbir2and |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( Unit ` S ) ) |
24 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
25 |
19 24 18
|
ringinvcl |
|- ( ( S e. Ring /\ x e. ( Unit ` S ) ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
26 |
6 23 25
|
syl2anc |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
27 |
1 3 19 24
|
subrginv |
|- ( ( A e. ( SubRing ` R ) /\ x e. ( Unit ` S ) ) -> ( I ` x ) = ( ( invr ` S ) ` x ) ) |
28 |
4 23 27
|
syl2anc |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( I ` x ) = ( ( invr ` S ) ` x ) ) |
29 |
26 28 12
|
3eltr4d |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( I ` x ) e. A ) |
30 |
29
|
ralrimiva |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) -> A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) |
31 |
5
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> S e. Ring ) |
32 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
33 |
1 32 19
|
subrguss |
|- ( A e. ( SubRing ` R ) -> ( Unit ` S ) C_ ( Unit ` R ) ) |
34 |
33
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( Unit ` R ) ) |
35 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
36 |
35 32 2
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) ) |
37 |
36
|
simprbi |
|- ( R e. DivRing -> ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) |
39 |
34 38
|
sseqtrd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( ( Base ` R ) \ { .0. } ) ) |
40 |
18 19
|
unitss |
|- ( Unit ` S ) C_ ( Base ` S ) |
41 |
11
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A = ( Base ` S ) ) |
42 |
40 41
|
sseqtrrid |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ A ) |
43 |
39 42
|
ssind |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
44 |
35
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
45 |
44
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A C_ ( Base ` R ) ) |
46 |
|
difin2 |
|- ( A C_ ( Base ` R ) -> ( A \ { .0. } ) = ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
47 |
45 46
|
syl |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) = ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
48 |
43 47
|
sseqtrrd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( A \ { .0. } ) ) |
49 |
44
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> A C_ ( Base ` R ) ) |
50 |
|
simprl |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( A \ { .0. } ) ) |
51 |
50 8
|
sylib |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. A /\ x =/= .0. ) ) |
52 |
51
|
simpld |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. A ) |
53 |
49 52
|
sseldd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Base ` R ) ) |
54 |
51
|
simprd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x =/= .0. ) |
55 |
35 32 2
|
drngunit |
|- ( R e. DivRing -> ( x e. ( Unit ` R ) <-> ( x e. ( Base ` R ) /\ x =/= .0. ) ) ) |
56 |
55
|
ad2antrr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. ( Unit ` R ) <-> ( x e. ( Base ` R ) /\ x =/= .0. ) ) ) |
57 |
53 54 56
|
mpbir2and |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Unit ` R ) ) |
58 |
|
simprr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( I ` x ) e. A ) |
59 |
1 32 19 3
|
subrgunit |
|- ( A e. ( SubRing ` R ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Unit ` R ) /\ x e. A /\ ( I ` x ) e. A ) ) ) |
60 |
59
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Unit ` R ) /\ x e. A /\ ( I ` x ) e. A ) ) ) |
61 |
57 52 58 60
|
mpbir3and |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Unit ` S ) ) |
62 |
61
|
expr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ x e. ( A \ { .0. } ) ) -> ( ( I ` x ) e. A -> x e. ( Unit ` S ) ) ) |
63 |
62
|
ralimdva |
|- ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) -> ( A. x e. ( A \ { .0. } ) ( I ` x ) e. A -> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) ) |
64 |
63
|
imp |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) |
65 |
|
dfss3 |
|- ( ( A \ { .0. } ) C_ ( Unit ` S ) <-> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) |
66 |
64 65
|
sylibr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) C_ ( Unit ` S ) ) |
67 |
48 66
|
eqssd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) = ( A \ { .0. } ) ) |
68 |
15
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> .0. = ( 0g ` S ) ) |
69 |
68
|
sneqd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> { .0. } = { ( 0g ` S ) } ) |
70 |
41 69
|
difeq12d |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) |
71 |
67 70
|
eqtrd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) |
72 |
18 19 20
|
isdrng |
|- ( S e. DivRing <-> ( S e. Ring /\ ( Unit ` S ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) ) |
73 |
31 71 72
|
sylanbrc |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> S e. DivRing ) |
74 |
30 73
|
impbida |
|- ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) -> ( S e. DivRing <-> A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) ) |