| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubdrg.s |
|- S = ( R |`s A ) |
| 2 |
|
issubdrg.z |
|- .0. = ( 0g ` R ) |
| 3 |
|
issubdrg.i |
|- I = ( invr ` R ) |
| 4 |
|
simpllr |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> A e. ( SubRing ` R ) ) |
| 5 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 6 |
4 5
|
syl |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> S e. Ring ) |
| 7 |
|
simpr |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( A \ { .0. } ) ) |
| 8 |
|
eldifsn |
|- ( x e. ( A \ { .0. } ) <-> ( x e. A /\ x =/= .0. ) ) |
| 9 |
7 8
|
sylib |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( x e. A /\ x =/= .0. ) ) |
| 10 |
9
|
simpld |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. A ) |
| 11 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 12 |
4 11
|
syl |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> A = ( Base ` S ) ) |
| 13 |
10 12
|
eleqtrd |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( Base ` S ) ) |
| 14 |
9
|
simprd |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x =/= .0. ) |
| 15 |
1 2
|
subrg0 |
|- ( A e. ( SubRing ` R ) -> .0. = ( 0g ` S ) ) |
| 16 |
4 15
|
syl |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> .0. = ( 0g ` S ) ) |
| 17 |
14 16
|
neeqtrd |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x =/= ( 0g ` S ) ) |
| 18 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 19 |
|
eqid |
|- ( Unit ` S ) = ( Unit ` S ) |
| 20 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 21 |
18 19 20
|
drngunit |
|- ( S e. DivRing -> ( x e. ( Unit ` S ) <-> ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) ) |
| 22 |
21
|
ad2antlr |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Base ` S ) /\ x =/= ( 0g ` S ) ) ) ) |
| 23 |
13 17 22
|
mpbir2and |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> x e. ( Unit ` S ) ) |
| 24 |
|
eqid |
|- ( invr ` S ) = ( invr ` S ) |
| 25 |
19 24 18
|
ringinvcl |
|- ( ( S e. Ring /\ x e. ( Unit ` S ) ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
| 26 |
6 23 25
|
syl2anc |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( ( invr ` S ) ` x ) e. ( Base ` S ) ) |
| 27 |
1 3 19 24
|
subrginv |
|- ( ( A e. ( SubRing ` R ) /\ x e. ( Unit ` S ) ) -> ( I ` x ) = ( ( invr ` S ) ` x ) ) |
| 28 |
4 23 27
|
syl2anc |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( I ` x ) = ( ( invr ` S ) ` x ) ) |
| 29 |
26 28 12
|
3eltr4d |
|- ( ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) /\ x e. ( A \ { .0. } ) ) -> ( I ` x ) e. A ) |
| 30 |
29
|
ralrimiva |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ S e. DivRing ) -> A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) |
| 31 |
5
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> S e. Ring ) |
| 32 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 33 |
1 32 19
|
subrguss |
|- ( A e. ( SubRing ` R ) -> ( Unit ` S ) C_ ( Unit ` R ) ) |
| 34 |
33
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( Unit ` R ) ) |
| 35 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 36 |
35 32 2
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) ) |
| 37 |
36
|
simprbi |
|- ( R e. DivRing -> ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` R ) = ( ( Base ` R ) \ { .0. } ) ) |
| 39 |
34 38
|
sseqtrd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( ( Base ` R ) \ { .0. } ) ) |
| 40 |
18 19
|
unitss |
|- ( Unit ` S ) C_ ( Base ` S ) |
| 41 |
11
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A = ( Base ` S ) ) |
| 42 |
40 41
|
sseqtrrid |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ A ) |
| 43 |
39 42
|
ssind |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
| 44 |
35
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 45 |
44
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A C_ ( Base ` R ) ) |
| 46 |
|
difin2 |
|- ( A C_ ( Base ` R ) -> ( A \ { .0. } ) = ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
| 47 |
45 46
|
syl |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) = ( ( ( Base ` R ) \ { .0. } ) i^i A ) ) |
| 48 |
43 47
|
sseqtrrd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) C_ ( A \ { .0. } ) ) |
| 49 |
44
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> A C_ ( Base ` R ) ) |
| 50 |
|
simprl |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( A \ { .0. } ) ) |
| 51 |
50 8
|
sylib |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. A /\ x =/= .0. ) ) |
| 52 |
51
|
simpld |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. A ) |
| 53 |
49 52
|
sseldd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Base ` R ) ) |
| 54 |
51
|
simprd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x =/= .0. ) |
| 55 |
35 32 2
|
drngunit |
|- ( R e. DivRing -> ( x e. ( Unit ` R ) <-> ( x e. ( Base ` R ) /\ x =/= .0. ) ) ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. ( Unit ` R ) <-> ( x e. ( Base ` R ) /\ x =/= .0. ) ) ) |
| 57 |
53 54 56
|
mpbir2and |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Unit ` R ) ) |
| 58 |
|
simprr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( I ` x ) e. A ) |
| 59 |
1 32 19 3
|
subrgunit |
|- ( A e. ( SubRing ` R ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Unit ` R ) /\ x e. A /\ ( I ` x ) e. A ) ) ) |
| 60 |
59
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> ( x e. ( Unit ` S ) <-> ( x e. ( Unit ` R ) /\ x e. A /\ ( I ` x ) e. A ) ) ) |
| 61 |
57 52 58 60
|
mpbir3and |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ ( x e. ( A \ { .0. } ) /\ ( I ` x ) e. A ) ) -> x e. ( Unit ` S ) ) |
| 62 |
61
|
expr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ x e. ( A \ { .0. } ) ) -> ( ( I ` x ) e. A -> x e. ( Unit ` S ) ) ) |
| 63 |
62
|
ralimdva |
|- ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) -> ( A. x e. ( A \ { .0. } ) ( I ` x ) e. A -> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) ) |
| 64 |
63
|
imp |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) |
| 65 |
|
dfss3 |
|- ( ( A \ { .0. } ) C_ ( Unit ` S ) <-> A. x e. ( A \ { .0. } ) x e. ( Unit ` S ) ) |
| 66 |
64 65
|
sylibr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) C_ ( Unit ` S ) ) |
| 67 |
48 66
|
eqssd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) = ( A \ { .0. } ) ) |
| 68 |
15
|
ad2antlr |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> .0. = ( 0g ` S ) ) |
| 69 |
68
|
sneqd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> { .0. } = { ( 0g ` S ) } ) |
| 70 |
41 69
|
difeq12d |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( A \ { .0. } ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) |
| 71 |
67 70
|
eqtrd |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> ( Unit ` S ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) |
| 72 |
18 19 20
|
isdrng |
|- ( S e. DivRing <-> ( S e. Ring /\ ( Unit ` S ) = ( ( Base ` S ) \ { ( 0g ` S ) } ) ) ) |
| 73 |
31 71 72
|
sylanbrc |
|- ( ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) /\ A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) -> S e. DivRing ) |
| 74 |
30 73
|
impbida |
|- ( ( R e. DivRing /\ A e. ( SubRing ` R ) ) -> ( S e. DivRing <-> A. x e. ( A \ { .0. } ) ( I ` x ) e. A ) ) |