| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubg.b |
|- B = ( Base ` G ) |
| 2 |
|
df-subg |
|- SubGrp = ( w e. Grp |-> { s e. ~P ( Base ` w ) | ( w |`s s ) e. Grp } ) |
| 3 |
2
|
mptrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 4 |
|
simp1 |
|- ( ( G e. Grp /\ S C_ B /\ ( G |`s S ) e. Grp ) -> G e. Grp ) |
| 5 |
|
fveq2 |
|- ( w = G -> ( Base ` w ) = ( Base ` G ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( w = G -> ( Base ` w ) = B ) |
| 7 |
6
|
pweqd |
|- ( w = G -> ~P ( Base ` w ) = ~P B ) |
| 8 |
|
oveq1 |
|- ( w = G -> ( w |`s s ) = ( G |`s s ) ) |
| 9 |
8
|
eleq1d |
|- ( w = G -> ( ( w |`s s ) e. Grp <-> ( G |`s s ) e. Grp ) ) |
| 10 |
7 9
|
rabeqbidv |
|- ( w = G -> { s e. ~P ( Base ` w ) | ( w |`s s ) e. Grp } = { s e. ~P B | ( G |`s s ) e. Grp } ) |
| 11 |
1
|
fvexi |
|- B e. _V |
| 12 |
11
|
pwex |
|- ~P B e. _V |
| 13 |
12
|
rabex |
|- { s e. ~P B | ( G |`s s ) e. Grp } e. _V |
| 14 |
10 2 13
|
fvmpt |
|- ( G e. Grp -> ( SubGrp ` G ) = { s e. ~P B | ( G |`s s ) e. Grp } ) |
| 15 |
14
|
eleq2d |
|- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> S e. { s e. ~P B | ( G |`s s ) e. Grp } ) ) |
| 16 |
|
oveq2 |
|- ( s = S -> ( G |`s s ) = ( G |`s S ) ) |
| 17 |
16
|
eleq1d |
|- ( s = S -> ( ( G |`s s ) e. Grp <-> ( G |`s S ) e. Grp ) ) |
| 18 |
17
|
elrab |
|- ( S e. { s e. ~P B | ( G |`s s ) e. Grp } <-> ( S e. ~P B /\ ( G |`s S ) e. Grp ) ) |
| 19 |
11
|
elpw2 |
|- ( S e. ~P B <-> S C_ B ) |
| 20 |
19
|
anbi1i |
|- ( ( S e. ~P B /\ ( G |`s S ) e. Grp ) <-> ( S C_ B /\ ( G |`s S ) e. Grp ) ) |
| 21 |
18 20
|
bitri |
|- ( S e. { s e. ~P B | ( G |`s s ) e. Grp } <-> ( S C_ B /\ ( G |`s S ) e. Grp ) ) |
| 22 |
15 21
|
bitrdi |
|- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> ( S C_ B /\ ( G |`s S ) e. Grp ) ) ) |
| 23 |
|
ibar |
|- ( G e. Grp -> ( ( S C_ B /\ ( G |`s S ) e. Grp ) <-> ( G e. Grp /\ ( S C_ B /\ ( G |`s S ) e. Grp ) ) ) ) |
| 24 |
22 23
|
bitrd |
|- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> ( G e. Grp /\ ( S C_ B /\ ( G |`s S ) e. Grp ) ) ) ) |
| 25 |
|
3anass |
|- ( ( G e. Grp /\ S C_ B /\ ( G |`s S ) e. Grp ) <-> ( G e. Grp /\ ( S C_ B /\ ( G |`s S ) e. Grp ) ) ) |
| 26 |
24 25
|
bitr4di |
|- ( G e. Grp -> ( S e. ( SubGrp ` G ) <-> ( G e. Grp /\ S C_ B /\ ( G |`s S ) e. Grp ) ) ) |
| 27 |
3 4 26
|
pm5.21nii |
|- ( S e. ( SubGrp ` G ) <-> ( G e. Grp /\ S C_ B /\ ( G |`s S ) e. Grp ) ) |