Metamath Proof Explorer


Theorem issubgoilem

Description: Lemma for hhssabloilem . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypothesis issubgoilem.1
|- ( ( x e. Y /\ y e. Y ) -> ( x H y ) = ( x G y ) )
Assertion issubgoilem
|- ( ( A e. Y /\ B e. Y ) -> ( A H B ) = ( A G B ) )

Proof

Step Hyp Ref Expression
1 issubgoilem.1
 |-  ( ( x e. Y /\ y e. Y ) -> ( x H y ) = ( x G y ) )
2 oveq1
 |-  ( x = A -> ( x H y ) = ( A H y ) )
3 oveq1
 |-  ( x = A -> ( x G y ) = ( A G y ) )
4 2 3 eqeq12d
 |-  ( x = A -> ( ( x H y ) = ( x G y ) <-> ( A H y ) = ( A G y ) ) )
5 oveq2
 |-  ( y = B -> ( A H y ) = ( A H B ) )
6 oveq2
 |-  ( y = B -> ( A G y ) = ( A G B ) )
7 5 6 eqeq12d
 |-  ( y = B -> ( ( A H y ) = ( A G y ) <-> ( A H B ) = ( A G B ) ) )
8 4 7 1 vtocl2ga
 |-  ( ( A e. Y /\ B e. Y ) -> ( A H B ) = ( A G B ) )