| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubgoilem.1 |
|- ( ( x e. Y /\ y e. Y ) -> ( x H y ) = ( x G y ) ) |
| 2 |
|
oveq1 |
|- ( x = A -> ( x H y ) = ( A H y ) ) |
| 3 |
|
oveq1 |
|- ( x = A -> ( x G y ) = ( A G y ) ) |
| 4 |
2 3
|
eqeq12d |
|- ( x = A -> ( ( x H y ) = ( x G y ) <-> ( A H y ) = ( A G y ) ) ) |
| 5 |
|
oveq2 |
|- ( y = B -> ( A H y ) = ( A H B ) ) |
| 6 |
|
oveq2 |
|- ( y = B -> ( A G y ) = ( A G B ) ) |
| 7 |
5 6
|
eqeq12d |
|- ( y = B -> ( ( A H y ) = ( A G y ) <-> ( A H B ) = ( A G B ) ) ) |
| 8 |
4 7 1
|
vtocl2ga |
|- ( ( A e. Y /\ B e. Y ) -> ( A H B ) = ( A G B ) ) |