| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubgrpd.s |
|- ( ph -> S = ( I |`s D ) ) |
| 2 |
|
issubgrpd.z |
|- ( ph -> .0. = ( 0g ` I ) ) |
| 3 |
|
issubgrpd.p |
|- ( ph -> .+ = ( +g ` I ) ) |
| 4 |
|
issubgrpd.ss |
|- ( ph -> D C_ ( Base ` I ) ) |
| 5 |
|
issubgrpd.zcl |
|- ( ph -> .0. e. D ) |
| 6 |
|
issubgrpd.acl |
|- ( ( ph /\ x e. D /\ y e. D ) -> ( x .+ y ) e. D ) |
| 7 |
|
issubgrpd.ncl |
|- ( ( ph /\ x e. D ) -> ( ( invg ` I ) ` x ) e. D ) |
| 8 |
|
issubgrpd.g |
|- ( ph -> I e. Grp ) |
| 9 |
5
|
ne0d |
|- ( ph -> D =/= (/) ) |
| 10 |
3
|
oveqd |
|- ( ph -> ( x .+ y ) = ( x ( +g ` I ) y ) ) |
| 11 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. D ) /\ y e. D ) -> ( x .+ y ) = ( x ( +g ` I ) y ) ) |
| 12 |
6
|
3expa |
|- ( ( ( ph /\ x e. D ) /\ y e. D ) -> ( x .+ y ) e. D ) |
| 13 |
11 12
|
eqeltrrd |
|- ( ( ( ph /\ x e. D ) /\ y e. D ) -> ( x ( +g ` I ) y ) e. D ) |
| 14 |
13
|
ralrimiva |
|- ( ( ph /\ x e. D ) -> A. y e. D ( x ( +g ` I ) y ) e. D ) |
| 15 |
14 7
|
jca |
|- ( ( ph /\ x e. D ) -> ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) |
| 16 |
15
|
ralrimiva |
|- ( ph -> A. x e. D ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) |
| 17 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
| 18 |
|
eqid |
|- ( +g ` I ) = ( +g ` I ) |
| 19 |
|
eqid |
|- ( invg ` I ) = ( invg ` I ) |
| 20 |
17 18 19
|
issubg2 |
|- ( I e. Grp -> ( D e. ( SubGrp ` I ) <-> ( D C_ ( Base ` I ) /\ D =/= (/) /\ A. x e. D ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) ) ) |
| 21 |
8 20
|
syl |
|- ( ph -> ( D e. ( SubGrp ` I ) <-> ( D C_ ( Base ` I ) /\ D =/= (/) /\ A. x e. D ( A. y e. D ( x ( +g ` I ) y ) e. D /\ ( ( invg ` I ) ` x ) e. D ) ) ) ) |
| 22 |
4 9 16 21
|
mpbir3and |
|- ( ph -> D e. ( SubGrp ` I ) ) |