Step |
Hyp |
Ref |
Expression |
1 |
|
issubrg.b |
|- B = ( Base ` R ) |
2 |
|
issubrg.i |
|- .1. = ( 1r ` R ) |
3 |
|
df-subrg |
|- SubRing = ( r e. Ring |-> { s e. ~P ( Base ` r ) | ( ( r |`s s ) e. Ring /\ ( 1r ` r ) e. s ) } ) |
4 |
3
|
mptrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
5 |
|
simpll |
|- ( ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) -> R e. Ring ) |
6 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
7 |
6 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
8 |
7
|
pweqd |
|- ( r = R -> ~P ( Base ` r ) = ~P B ) |
9 |
|
oveq1 |
|- ( r = R -> ( r |`s s ) = ( R |`s s ) ) |
10 |
9
|
eleq1d |
|- ( r = R -> ( ( r |`s s ) e. Ring <-> ( R |`s s ) e. Ring ) ) |
11 |
|
fveq2 |
|- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
12 |
11 2
|
eqtr4di |
|- ( r = R -> ( 1r ` r ) = .1. ) |
13 |
12
|
eleq1d |
|- ( r = R -> ( ( 1r ` r ) e. s <-> .1. e. s ) ) |
14 |
10 13
|
anbi12d |
|- ( r = R -> ( ( ( r |`s s ) e. Ring /\ ( 1r ` r ) e. s ) <-> ( ( R |`s s ) e. Ring /\ .1. e. s ) ) ) |
15 |
8 14
|
rabeqbidv |
|- ( r = R -> { s e. ~P ( Base ` r ) | ( ( r |`s s ) e. Ring /\ ( 1r ` r ) e. s ) } = { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } ) |
16 |
1
|
fvexi |
|- B e. _V |
17 |
16
|
pwex |
|- ~P B e. _V |
18 |
17
|
rabex |
|- { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } e. _V |
19 |
15 3 18
|
fvmpt |
|- ( R e. Ring -> ( SubRing ` R ) = { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } ) |
20 |
19
|
eleq2d |
|- ( R e. Ring -> ( A e. ( SubRing ` R ) <-> A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } ) ) |
21 |
|
oveq2 |
|- ( s = A -> ( R |`s s ) = ( R |`s A ) ) |
22 |
21
|
eleq1d |
|- ( s = A -> ( ( R |`s s ) e. Ring <-> ( R |`s A ) e. Ring ) ) |
23 |
|
eleq2 |
|- ( s = A -> ( .1. e. s <-> .1. e. A ) ) |
24 |
22 23
|
anbi12d |
|- ( s = A -> ( ( ( R |`s s ) e. Ring /\ .1. e. s ) <-> ( ( R |`s A ) e. Ring /\ .1. e. A ) ) ) |
25 |
24
|
elrab |
|- ( A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } <-> ( A e. ~P B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) ) |
26 |
16
|
elpw2 |
|- ( A e. ~P B <-> A C_ B ) |
27 |
26
|
anbi1i |
|- ( ( A e. ~P B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) <-> ( A C_ B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) ) |
28 |
|
an12 |
|- ( ( A C_ B /\ ( ( R |`s A ) e. Ring /\ .1. e. A ) ) <-> ( ( R |`s A ) e. Ring /\ ( A C_ B /\ .1. e. A ) ) ) |
29 |
25 27 28
|
3bitri |
|- ( A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } <-> ( ( R |`s A ) e. Ring /\ ( A C_ B /\ .1. e. A ) ) ) |
30 |
|
ibar |
|- ( R e. Ring -> ( ( R |`s A ) e. Ring <-> ( R e. Ring /\ ( R |`s A ) e. Ring ) ) ) |
31 |
30
|
anbi1d |
|- ( R e. Ring -> ( ( ( R |`s A ) e. Ring /\ ( A C_ B /\ .1. e. A ) ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) ) |
32 |
29 31
|
syl5bb |
|- ( R e. Ring -> ( A e. { s e. ~P B | ( ( R |`s s ) e. Ring /\ .1. e. s ) } <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) ) |
33 |
20 32
|
bitrd |
|- ( R e. Ring -> ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) ) |
34 |
4 5 33
|
pm5.21nii |
|- ( A e. ( SubRing ` R ) <-> ( ( R e. Ring /\ ( R |`s A ) e. Ring ) /\ ( A C_ B /\ .1. e. A ) ) ) |