Step |
Hyp |
Ref |
Expression |
1 |
|
issubrngd.s |
|- ( ph -> S = ( I |`s D ) ) |
2 |
|
issubrngd.z |
|- ( ph -> .0. = ( 0g ` I ) ) |
3 |
|
issubrngd.p |
|- ( ph -> .+ = ( +g ` I ) ) |
4 |
|
issubrngd.ss |
|- ( ph -> D C_ ( Base ` I ) ) |
5 |
|
issubrngd.zcl |
|- ( ph -> .0. e. D ) |
6 |
|
issubrngd.acl |
|- ( ( ph /\ x e. D /\ y e. D ) -> ( x .+ y ) e. D ) |
7 |
|
issubrngd.ncl |
|- ( ( ph /\ x e. D ) -> ( ( invg ` I ) ` x ) e. D ) |
8 |
|
issubrngd.o |
|- ( ph -> .1. = ( 1r ` I ) ) |
9 |
|
issubrngd.t |
|- ( ph -> .x. = ( .r ` I ) ) |
10 |
|
issubrngd.ocl |
|- ( ph -> .1. e. D ) |
11 |
|
issubrngd.tcl |
|- ( ( ph /\ x e. D /\ y e. D ) -> ( x .x. y ) e. D ) |
12 |
|
issubrngd.g |
|- ( ph -> I e. Ring ) |
13 |
|
ringgrp |
|- ( I e. Ring -> I e. Grp ) |
14 |
12 13
|
syl |
|- ( ph -> I e. Grp ) |
15 |
1 2 3 4 5 6 7 14
|
issubgrpd2 |
|- ( ph -> D e. ( SubGrp ` I ) ) |
16 |
8 10
|
eqeltrrd |
|- ( ph -> ( 1r ` I ) e. D ) |
17 |
9
|
oveqdr |
|- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x .x. y ) = ( x ( .r ` I ) y ) ) |
18 |
11
|
3expb |
|- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x .x. y ) e. D ) |
19 |
17 18
|
eqeltrrd |
|- ( ( ph /\ ( x e. D /\ y e. D ) ) -> ( x ( .r ` I ) y ) e. D ) |
20 |
19
|
ralrimivva |
|- ( ph -> A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) |
21 |
|
eqid |
|- ( Base ` I ) = ( Base ` I ) |
22 |
|
eqid |
|- ( 1r ` I ) = ( 1r ` I ) |
23 |
|
eqid |
|- ( .r ` I ) = ( .r ` I ) |
24 |
21 22 23
|
issubrg2 |
|- ( I e. Ring -> ( D e. ( SubRing ` I ) <-> ( D e. ( SubGrp ` I ) /\ ( 1r ` I ) e. D /\ A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) ) ) |
25 |
12 24
|
syl |
|- ( ph -> ( D e. ( SubRing ` I ) <-> ( D e. ( SubGrp ` I ) /\ ( 1r ` I ) e. D /\ A. x e. D A. y e. D ( x ( .r ` I ) y ) e. D ) ) ) |
26 |
15 16 20 25
|
mpbir3and |
|- ( ph -> D e. ( SubRing ` I ) ) |