Description: Lemma for ist1-5 and similar theorems. If A is a topological property which implies T_0, such as T_1 or T_2, the property can be "decomposed" into T_0 and a non-T_0 version of property A (which is defined as stating that the Kolmogorov quotient of the space has property A ). For example, if A is T_1, then the theorem states that a space is T_1 iff it is T_0 and its Kolmogorov quotient is T_1 (we call this property R_0). (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ist1-5lem.1 | |- ( J e. A -> J e. Kol2 ) |
|
ist1-5lem.2 | |- ( J ~= ( KQ ` J ) -> ( J e. A -> ( KQ ` J ) e. A ) ) |
||
ist1-5lem.3 | |- ( ( KQ ` J ) ~= J -> ( ( KQ ` J ) e. A -> J e. A ) ) |
||
Assertion | ist1-5lem | |- ( J e. A <-> ( J e. Kol2 /\ ( KQ ` J ) e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist1-5lem.1 | |- ( J e. A -> J e. Kol2 ) |
|
2 | ist1-5lem.2 | |- ( J ~= ( KQ ` J ) -> ( J e. A -> ( KQ ` J ) e. A ) ) |
|
3 | ist1-5lem.3 | |- ( ( KQ ` J ) ~= J -> ( ( KQ ` J ) e. A -> J e. A ) ) |
|
4 | kqhmph | |- ( J e. Kol2 <-> J ~= ( KQ ` J ) ) |
|
5 | 1 4 | sylib | |- ( J e. A -> J ~= ( KQ ` J ) ) |
6 | 5 2 | mpcom | |- ( J e. A -> ( KQ ` J ) e. A ) |
7 | 1 6 | jca | |- ( J e. A -> ( J e. Kol2 /\ ( KQ ` J ) e. A ) ) |
8 | hmphsym | |- ( J ~= ( KQ ` J ) -> ( KQ ` J ) ~= J ) |
|
9 | 4 8 | sylbi | |- ( J e. Kol2 -> ( KQ ` J ) ~= J ) |
10 | 9 3 | syl | |- ( J e. Kol2 -> ( ( KQ ` J ) e. A -> J e. A ) ) |
11 | 10 | imp | |- ( ( J e. Kol2 /\ ( KQ ` J ) e. A ) -> J e. A ) |
12 | 7 11 | impbii | |- ( J e. A <-> ( J e. Kol2 /\ ( KQ ` J ) e. A ) ) |