Metamath Proof Explorer


Theorem ist1-5lem

Description: Lemma for ist1-5 and similar theorems. If A is a topological property which implies T_0, such as T_1 or T_2, the property can be "decomposed" into T_0 and a non-T_0 version of property A (which is defined as stating that the Kolmogorov quotient of the space has property A ). For example, if A is T_1, then the theorem states that a space is T_1 iff it is T_0 and its Kolmogorov quotient is T_1 (we call this property R_0). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses ist1-5lem.1
|- ( J e. A -> J e. Kol2 )
ist1-5lem.2
|- ( J ~= ( KQ ` J ) -> ( J e. A -> ( KQ ` J ) e. A ) )
ist1-5lem.3
|- ( ( KQ ` J ) ~= J -> ( ( KQ ` J ) e. A -> J e. A ) )
Assertion ist1-5lem
|- ( J e. A <-> ( J e. Kol2 /\ ( KQ ` J ) e. A ) )

Proof

Step Hyp Ref Expression
1 ist1-5lem.1
 |-  ( J e. A -> J e. Kol2 )
2 ist1-5lem.2
 |-  ( J ~= ( KQ ` J ) -> ( J e. A -> ( KQ ` J ) e. A ) )
3 ist1-5lem.3
 |-  ( ( KQ ` J ) ~= J -> ( ( KQ ` J ) e. A -> J e. A ) )
4 kqhmph
 |-  ( J e. Kol2 <-> J ~= ( KQ ` J ) )
5 1 4 sylib
 |-  ( J e. A -> J ~= ( KQ ` J ) )
6 5 2 mpcom
 |-  ( J e. A -> ( KQ ` J ) e. A )
7 1 6 jca
 |-  ( J e. A -> ( J e. Kol2 /\ ( KQ ` J ) e. A ) )
8 hmphsym
 |-  ( J ~= ( KQ ` J ) -> ( KQ ` J ) ~= J )
9 4 8 sylbi
 |-  ( J e. Kol2 -> ( KQ ` J ) ~= J )
10 9 3 syl
 |-  ( J e. Kol2 -> ( ( KQ ` J ) e. A -> J e. A ) )
11 10 imp
 |-  ( ( J e. Kol2 /\ ( KQ ` J ) e. A ) -> J e. A )
12 7 11 impbii
 |-  ( J e. A <-> ( J e. Kol2 /\ ( KQ ` J ) e. A ) )