Step |
Hyp |
Ref |
Expression |
1 |
|
istrg.1 |
|- M = ( mulGrp ` R ) |
2 |
|
istdrg.1 |
|- U = ( Unit ` R ) |
3 |
|
elin |
|- ( R e. ( TopRing i^i DivRing ) <-> ( R e. TopRing /\ R e. DivRing ) ) |
4 |
3
|
anbi1i |
|- ( ( R e. ( TopRing i^i DivRing ) /\ ( M |`s U ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s U ) e. TopGrp ) ) |
5 |
|
fveq2 |
|- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
6 |
5 1
|
eqtr4di |
|- ( r = R -> ( mulGrp ` r ) = M ) |
7 |
|
fveq2 |
|- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
8 |
7 2
|
eqtr4di |
|- ( r = R -> ( Unit ` r ) = U ) |
9 |
6 8
|
oveq12d |
|- ( r = R -> ( ( mulGrp ` r ) |`s ( Unit ` r ) ) = ( M |`s U ) ) |
10 |
9
|
eleq1d |
|- ( r = R -> ( ( ( mulGrp ` r ) |`s ( Unit ` r ) ) e. TopGrp <-> ( M |`s U ) e. TopGrp ) ) |
11 |
|
df-tdrg |
|- TopDRing = { r e. ( TopRing i^i DivRing ) | ( ( mulGrp ` r ) |`s ( Unit ` r ) ) e. TopGrp } |
12 |
10 11
|
elrab2 |
|- ( R e. TopDRing <-> ( R e. ( TopRing i^i DivRing ) /\ ( M |`s U ) e. TopGrp ) ) |
13 |
|
df-3an |
|- ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s U ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s U ) e. TopGrp ) ) |
14 |
4 12 13
|
3bitr4i |
|- ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s U ) e. TopGrp ) ) |