| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							istdrg2.m | 
							 |-  M = ( mulGrp ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							istdrg2.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							istdrg2.z | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Unit ` R ) = ( Unit ` R )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							istdrg | 
							 |-  ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) )  | 
						
						
							| 6 | 
							
								2 4 3
							 | 
							isdrng | 
							 |-  ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) | 
						
						
							| 7 | 
							
								6
							 | 
							simprbi | 
							 |-  ( R e. DivRing -> ( Unit ` R ) = ( B \ { .0. } ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							 |-  ( ( R e. TopRing /\ R e. DivRing ) -> ( Unit ` R ) = ( B \ { .0. } ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2d | 
							 |-  ( ( R e. TopRing /\ R e. DivRing ) -> ( M |`s ( Unit ` R ) ) = ( M |`s ( B \ { .0. } ) ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							eleq1d | 
							 |-  ( ( R e. TopRing /\ R e. DivRing ) -> ( ( M |`s ( Unit ` R ) ) e. TopGrp <-> ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) | 
						
						
							| 11 | 
							
								10
							 | 
							pm5.32i | 
							 |-  ( ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) | 
						
						
							| 12 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) )  | 
						
						
							| 13 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3bitr4i | 
							 |-  ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) | 
						
						
							| 15 | 
							
								5 14
							 | 
							bitri | 
							 |-  ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) |