Step |
Hyp |
Ref |
Expression |
1 |
|
istdrg2.m |
|- M = ( mulGrp ` R ) |
2 |
|
istdrg2.b |
|- B = ( Base ` R ) |
3 |
|
istdrg2.z |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
5 |
1 4
|
istdrg |
|- ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) ) |
6 |
2 4 3
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
7 |
6
|
simprbi |
|- ( R e. DivRing -> ( Unit ` R ) = ( B \ { .0. } ) ) |
8 |
7
|
adantl |
|- ( ( R e. TopRing /\ R e. DivRing ) -> ( Unit ` R ) = ( B \ { .0. } ) ) |
9 |
8
|
oveq2d |
|- ( ( R e. TopRing /\ R e. DivRing ) -> ( M |`s ( Unit ` R ) ) = ( M |`s ( B \ { .0. } ) ) ) |
10 |
9
|
eleq1d |
|- ( ( R e. TopRing /\ R e. DivRing ) -> ( ( M |`s ( Unit ` R ) ) e. TopGrp <-> ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) |
11 |
10
|
pm5.32i |
|- ( ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) |
12 |
|
df-3an |
|- ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) ) |
13 |
|
df-3an |
|- ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) <-> ( ( R e. TopRing /\ R e. DivRing ) /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) |
14 |
11 12 13
|
3bitr4i |
|- ( ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( Unit ` R ) ) e. TopGrp ) <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) |
15 |
5 14
|
bitri |
|- ( R e. TopDRing <-> ( R e. TopRing /\ R e. DivRing /\ ( M |`s ( B \ { .0. } ) ) e. TopGrp ) ) |