Step |
Hyp |
Ref |
Expression |
1 |
|
istgp.1 |
|- J = ( TopOpen ` G ) |
2 |
|
istgp.2 |
|- I = ( invg ` G ) |
3 |
|
elin |
|- ( G e. ( Grp i^i TopMnd ) <-> ( G e. Grp /\ G e. TopMnd ) ) |
4 |
3
|
anbi1i |
|- ( ( G e. ( Grp i^i TopMnd ) /\ I e. ( J Cn J ) ) <-> ( ( G e. Grp /\ G e. TopMnd ) /\ I e. ( J Cn J ) ) ) |
5 |
|
fvexd |
|- ( f = G -> ( TopOpen ` f ) e. _V ) |
6 |
|
simpl |
|- ( ( f = G /\ j = ( TopOpen ` f ) ) -> f = G ) |
7 |
6
|
fveq2d |
|- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( invg ` f ) = ( invg ` G ) ) |
8 |
7 2
|
eqtr4di |
|- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( invg ` f ) = I ) |
9 |
|
id |
|- ( j = ( TopOpen ` f ) -> j = ( TopOpen ` f ) ) |
10 |
|
fveq2 |
|- ( f = G -> ( TopOpen ` f ) = ( TopOpen ` G ) ) |
11 |
10 1
|
eqtr4di |
|- ( f = G -> ( TopOpen ` f ) = J ) |
12 |
9 11
|
sylan9eqr |
|- ( ( f = G /\ j = ( TopOpen ` f ) ) -> j = J ) |
13 |
12 12
|
oveq12d |
|- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( j Cn j ) = ( J Cn J ) ) |
14 |
8 13
|
eleq12d |
|- ( ( f = G /\ j = ( TopOpen ` f ) ) -> ( ( invg ` f ) e. ( j Cn j ) <-> I e. ( J Cn J ) ) ) |
15 |
5 14
|
sbcied |
|- ( f = G -> ( [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) <-> I e. ( J Cn J ) ) ) |
16 |
|
df-tgp |
|- TopGrp = { f e. ( Grp i^i TopMnd ) | [. ( TopOpen ` f ) / j ]. ( invg ` f ) e. ( j Cn j ) } |
17 |
15 16
|
elrab2 |
|- ( G e. TopGrp <-> ( G e. ( Grp i^i TopMnd ) /\ I e. ( J Cn J ) ) ) |
18 |
|
df-3an |
|- ( ( G e. Grp /\ G e. TopMnd /\ I e. ( J Cn J ) ) <-> ( ( G e. Grp /\ G e. TopMnd ) /\ I e. ( J Cn J ) ) ) |
19 |
4 17 18
|
3bitr4i |
|- ( G e. TopGrp <-> ( G e. Grp /\ G e. TopMnd /\ I e. ( J Cn J ) ) ) |