Step |
Hyp |
Ref |
Expression |
1 |
|
istlm.s |
|- .x. = ( .sf ` W ) |
2 |
|
istlm.j |
|- J = ( TopOpen ` W ) |
3 |
|
istlm.f |
|- F = ( Scalar ` W ) |
4 |
|
istlm.k |
|- K = ( TopOpen ` F ) |
5 |
|
anass |
|- ( ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) <-> ( W e. ( TopMnd i^i LMod ) /\ ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
6 |
|
df-3an |
|- ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) <-> ( ( W e. TopMnd /\ W e. LMod ) /\ F e. TopRing ) ) |
7 |
|
elin |
|- ( W e. ( TopMnd i^i LMod ) <-> ( W e. TopMnd /\ W e. LMod ) ) |
8 |
7
|
anbi1i |
|- ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) <-> ( ( W e. TopMnd /\ W e. LMod ) /\ F e. TopRing ) ) |
9 |
6 8
|
bitr4i |
|- ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) <-> ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) ) |
10 |
9
|
anbi1i |
|- ( ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) <-> ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |
11 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
12 |
11 3
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = F ) |
13 |
12
|
eleq1d |
|- ( w = W -> ( ( Scalar ` w ) e. TopRing <-> F e. TopRing ) ) |
14 |
|
fveq2 |
|- ( w = W -> ( .sf ` w ) = ( .sf ` W ) ) |
15 |
14 1
|
eqtr4di |
|- ( w = W -> ( .sf ` w ) = .x. ) |
16 |
12
|
fveq2d |
|- ( w = W -> ( TopOpen ` ( Scalar ` w ) ) = ( TopOpen ` F ) ) |
17 |
16 4
|
eqtr4di |
|- ( w = W -> ( TopOpen ` ( Scalar ` w ) ) = K ) |
18 |
|
fveq2 |
|- ( w = W -> ( TopOpen ` w ) = ( TopOpen ` W ) ) |
19 |
18 2
|
eqtr4di |
|- ( w = W -> ( TopOpen ` w ) = J ) |
20 |
17 19
|
oveq12d |
|- ( w = W -> ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) = ( K tX J ) ) |
21 |
20 19
|
oveq12d |
|- ( w = W -> ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) = ( ( K tX J ) Cn J ) ) |
22 |
15 21
|
eleq12d |
|- ( w = W -> ( ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) <-> .x. e. ( ( K tX J ) Cn J ) ) ) |
23 |
13 22
|
anbi12d |
|- ( w = W -> ( ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) <-> ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
24 |
|
df-tlm |
|- TopMod = { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |
25 |
23 24
|
elrab2 |
|- ( W e. TopMod <-> ( W e. ( TopMnd i^i LMod ) /\ ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
26 |
5 10 25
|
3bitr4ri |
|- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |