Step |
Hyp |
Ref |
Expression |
1 |
|
istps.a |
|- A = ( Base ` K ) |
2 |
|
istps.j |
|- J = ( TopOpen ` K ) |
3 |
|
df-topsp |
|- TopSp = { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } |
4 |
3
|
eleq2i |
|- ( K e. TopSp <-> K e. { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } ) |
5 |
|
topontop |
|- ( J e. ( TopOn ` A ) -> J e. Top ) |
6 |
|
0ntop |
|- -. (/) e. Top |
7 |
|
fvprc |
|- ( -. K e. _V -> ( TopOpen ` K ) = (/) ) |
8 |
2 7
|
syl5eq |
|- ( -. K e. _V -> J = (/) ) |
9 |
8
|
eleq1d |
|- ( -. K e. _V -> ( J e. Top <-> (/) e. Top ) ) |
10 |
6 9
|
mtbiri |
|- ( -. K e. _V -> -. J e. Top ) |
11 |
10
|
con4i |
|- ( J e. Top -> K e. _V ) |
12 |
5 11
|
syl |
|- ( J e. ( TopOn ` A ) -> K e. _V ) |
13 |
|
fveq2 |
|- ( f = K -> ( TopOpen ` f ) = ( TopOpen ` K ) ) |
14 |
13 2
|
eqtr4di |
|- ( f = K -> ( TopOpen ` f ) = J ) |
15 |
|
fveq2 |
|- ( f = K -> ( Base ` f ) = ( Base ` K ) ) |
16 |
15 1
|
eqtr4di |
|- ( f = K -> ( Base ` f ) = A ) |
17 |
16
|
fveq2d |
|- ( f = K -> ( TopOn ` ( Base ` f ) ) = ( TopOn ` A ) ) |
18 |
14 17
|
eleq12d |
|- ( f = K -> ( ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) <-> J e. ( TopOn ` A ) ) ) |
19 |
12 18
|
elab3 |
|- ( K e. { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } <-> J e. ( TopOn ` A ) ) |
20 |
4 19
|
bitri |
|- ( K e. TopSp <-> J e. ( TopOn ` A ) ) |