Metamath Proof Explorer


Theorem istps

Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses istps.a
|- A = ( Base ` K )
istps.j
|- J = ( TopOpen ` K )
Assertion istps
|- ( K e. TopSp <-> J e. ( TopOn ` A ) )

Proof

Step Hyp Ref Expression
1 istps.a
 |-  A = ( Base ` K )
2 istps.j
 |-  J = ( TopOpen ` K )
3 df-topsp
 |-  TopSp = { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) }
4 3 eleq2i
 |-  ( K e. TopSp <-> K e. { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } )
5 topontop
 |-  ( J e. ( TopOn ` A ) -> J e. Top )
6 0ntop
 |-  -. (/) e. Top
7 fvprc
 |-  ( -. K e. _V -> ( TopOpen ` K ) = (/) )
8 2 7 syl5eq
 |-  ( -. K e. _V -> J = (/) )
9 8 eleq1d
 |-  ( -. K e. _V -> ( J e. Top <-> (/) e. Top ) )
10 6 9 mtbiri
 |-  ( -. K e. _V -> -. J e. Top )
11 10 con4i
 |-  ( J e. Top -> K e. _V )
12 5 11 syl
 |-  ( J e. ( TopOn ` A ) -> K e. _V )
13 fveq2
 |-  ( f = K -> ( TopOpen ` f ) = ( TopOpen ` K ) )
14 13 2 eqtr4di
 |-  ( f = K -> ( TopOpen ` f ) = J )
15 fveq2
 |-  ( f = K -> ( Base ` f ) = ( Base ` K ) )
16 15 1 eqtr4di
 |-  ( f = K -> ( Base ` f ) = A )
17 16 fveq2d
 |-  ( f = K -> ( TopOn ` ( Base ` f ) ) = ( TopOn ` A ) )
18 14 17 eleq12d
 |-  ( f = K -> ( ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) <-> J e. ( TopOn ` A ) ) )
19 12 18 elab3
 |-  ( K e. { f | ( TopOpen ` f ) e. ( TopOn ` ( Base ` f ) ) } <-> J e. ( TopOn ` A ) )
20 4 19 bitri
 |-  ( K e. TopSp <-> J e. ( TopOn ` A ) )