Description: Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istps.a | |- A = ( Base ` K ) |
|
| istps.j | |- J = ( TopOpen ` K ) |
||
| Assertion | istps2 | |- ( K e. TopSp <-> ( J e. Top /\ A = U. J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istps.a | |- A = ( Base ` K ) |
|
| 2 | istps.j | |- J = ( TopOpen ` K ) |
|
| 3 | 1 2 | istps | |- ( K e. TopSp <-> J e. ( TopOn ` A ) ) |
| 4 | istopon | |- ( J e. ( TopOn ` A ) <-> ( J e. Top /\ A = U. J ) ) |
|
| 5 | 3 4 | bitri | |- ( K e. TopSp <-> ( J e. Top /\ A = U. J ) ) |