Metamath Proof Explorer


Theorem istpsi

Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012)

Ref Expression
Hypotheses istpsi.b
|- ( Base ` K ) = A
istpsi.j
|- ( TopOpen ` K ) = J
istpsi.1
|- A = U. J
istpsi.2
|- J e. Top
Assertion istpsi
|- K e. TopSp

Proof

Step Hyp Ref Expression
1 istpsi.b
 |-  ( Base ` K ) = A
2 istpsi.j
 |-  ( TopOpen ` K ) = J
3 istpsi.1
 |-  A = U. J
4 istpsi.2
 |-  J e. Top
5 1 eqcomi
 |-  A = ( Base ` K )
6 2 eqcomi
 |-  J = ( TopOpen ` K )
7 5 6 istps2
 |-  ( K e. TopSp <-> ( J e. Top /\ A = U. J ) )
8 4 3 7 mpbir2an
 |-  K e. TopSp