Metamath Proof Explorer


Theorem istvc

Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypothesis tlmtrg.f
|- F = ( Scalar ` W )
Assertion istvc
|- ( W e. TopVec <-> ( W e. TopMod /\ F e. TopDRing ) )

Proof

Step Hyp Ref Expression
1 tlmtrg.f
 |-  F = ( Scalar ` W )
2 fveq2
 |-  ( x = W -> ( Scalar ` x ) = ( Scalar ` W ) )
3 2 1 eqtr4di
 |-  ( x = W -> ( Scalar ` x ) = F )
4 3 eleq1d
 |-  ( x = W -> ( ( Scalar ` x ) e. TopDRing <-> F e. TopDRing ) )
5 df-tvc
 |-  TopVec = { x e. TopMod | ( Scalar ` x ) e. TopDRing }
6 4 5 elrab2
 |-  ( W e. TopVec <-> ( W e. TopMod /\ F e. TopDRing ) )