Step |
Hyp |
Ref |
Expression |
1 |
|
isufd2.1 |
|- I = ( PrmIdeal ` R ) |
2 |
|
isufd2.2 |
|- P = ( RPrime ` R ) |
3 |
|
isufd2.3 |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( AbsVal ` R ) = ( AbsVal ` R ) |
5 |
4 1 2 3
|
isufd |
|- ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) |
6 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
7 |
4
|
abvn0b |
|- ( R e. Domn <-> ( R e. NzRing /\ ( AbsVal ` R ) =/= (/) ) ) |
8 |
7
|
baib |
|- ( R e. NzRing -> ( R e. Domn <-> ( AbsVal ` R ) =/= (/) ) ) |
9 |
8
|
anbi2d |
|- ( R e. NzRing -> ( ( R e. CRing /\ R e. Domn ) <-> ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) ) ) |
10 |
6 9
|
bitrid |
|- ( R e. NzRing -> ( R e. IDomn <-> ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) ) ) |
11 |
10
|
anbi1d |
|- ( R e. NzRing -> ( ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) <-> ( ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) |
12 |
|
anass |
|- ( ( ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) |
13 |
11 12
|
bitr2di |
|- ( R e. NzRing -> ( ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) |
14 |
5 13
|
bitrid |
|- ( R e. NzRing -> ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) ) |