Metamath Proof Explorer


Theorem isufd2

Description: Alternate definition of unique factorization domains, using integral domains, for nonzero rings. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses isufd2.1
|- I = ( PrmIdeal ` R )
isufd2.2
|- P = ( RPrime ` R )
isufd2.3
|- .0. = ( 0g ` R )
Assertion isufd2
|- ( R e. NzRing -> ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) )

Proof

Step Hyp Ref Expression
1 isufd2.1
 |-  I = ( PrmIdeal ` R )
2 isufd2.2
 |-  P = ( RPrime ` R )
3 isufd2.3
 |-  .0. = ( 0g ` R )
4 eqid
 |-  ( AbsVal ` R ) = ( AbsVal ` R )
5 4 1 2 3 isufd
 |-  ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) )
6 isidom
 |-  ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) )
7 4 abvn0b
 |-  ( R e. Domn <-> ( R e. NzRing /\ ( AbsVal ` R ) =/= (/) ) )
8 7 baib
 |-  ( R e. NzRing -> ( R e. Domn <-> ( AbsVal ` R ) =/= (/) ) )
9 8 anbi2d
 |-  ( R e. NzRing -> ( ( R e. CRing /\ R e. Domn ) <-> ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) ) )
10 6 9 bitrid
 |-  ( R e. NzRing -> ( R e. IDomn <-> ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) ) )
11 10 anbi1d
 |-  ( R e. NzRing -> ( ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) <-> ( ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) )
12 anass
 |-  ( ( ( R e. CRing /\ ( AbsVal ` R ) =/= (/) ) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) )
13 11 12 bitr2di
 |-  ( R e. NzRing -> ( ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) )
14 5 13 bitrid
 |-  ( R e. NzRing -> ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) )