Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 7-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zsum.1 | |- Z = ( ZZ>= ` M ) |
|
zsum.2 | |- ( ph -> M e. ZZ ) |
||
isum.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
||
isum.4 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
||
Assertion | isum | |- ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , F ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsum.1 | |- Z = ( ZZ>= ` M ) |
|
2 | zsum.2 | |- ( ph -> M e. ZZ ) |
|
3 | isum.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
|
4 | isum.4 | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
|
5 | ssidd | |- ( ph -> Z C_ Z ) |
|
6 | iftrue | |- ( k e. Z -> if ( k e. Z , B , 0 ) = B ) |
|
7 | 6 | adantl | |- ( ( ph /\ k e. Z ) -> if ( k e. Z , B , 0 ) = B ) |
8 | 3 7 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = if ( k e. Z , B , 0 ) ) |
9 | 1 2 5 8 4 | zsum | |- ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , F ) ) ) |