Step |
Hyp |
Ref |
Expression |
1 |
|
isum1p.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isum1p.3 |
|- ( ph -> M e. ZZ ) |
3 |
|
isum1p.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
4 |
|
isum1p.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
5 |
|
isum1p.6 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
6 |
|
eqid |
|- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( M + 1 ) ) |
7 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
8 |
2 7
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
9 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
11 |
10 1
|
eleqtrrdi |
|- ( ph -> ( M + 1 ) e. Z ) |
12 |
1 6 11 3 4 5
|
isumsplit |
|- ( ph -> sum_ k e. Z A = ( sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |
13 |
2
|
zcnd |
|- ( ph -> M e. CC ) |
14 |
|
ax-1cn |
|- 1 e. CC |
15 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
16 |
13 14 15
|
sylancl |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
17 |
16
|
oveq2d |
|- ( ph -> ( M ... ( ( M + 1 ) - 1 ) ) = ( M ... M ) ) |
18 |
17
|
sumeq1d |
|- ( ph -> sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A = sum_ k e. ( M ... M ) A ) |
19 |
|
elfzuz |
|- ( k e. ( M ... M ) -> k e. ( ZZ>= ` M ) ) |
20 |
19 1
|
eleqtrrdi |
|- ( k e. ( M ... M ) -> k e. Z ) |
21 |
20 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( F ` k ) = A ) |
22 |
21
|
sumeq2dv |
|- ( ph -> sum_ k e. ( M ... M ) ( F ` k ) = sum_ k e. ( M ... M ) A ) |
23 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
24 |
23
|
eleq1d |
|- ( k = M -> ( ( F ` k ) e. CC <-> ( F ` M ) e. CC ) ) |
25 |
3 4
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
26 |
25
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
27 |
8 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
28 |
24 26 27
|
rspcdva |
|- ( ph -> ( F ` M ) e. CC ) |
29 |
23
|
fsum1 |
|- ( ( M e. ZZ /\ ( F ` M ) e. CC ) -> sum_ k e. ( M ... M ) ( F ` k ) = ( F ` M ) ) |
30 |
2 28 29
|
syl2anc |
|- ( ph -> sum_ k e. ( M ... M ) ( F ` k ) = ( F ` M ) ) |
31 |
18 22 30
|
3eqtr2d |
|- ( ph -> sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A = ( F ` M ) ) |
32 |
31
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |
33 |
12 32
|
eqtrd |
|- ( ph -> sum_ k e. Z A = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |