| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isum1p.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
isum1p.3 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
isum1p.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
| 4 |
|
isum1p.5 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 5 |
|
isum1p.6 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 6 |
|
eqid |
|- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( M + 1 ) ) |
| 7 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 8 |
2 7
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 9 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 11 |
10 1
|
eleqtrrdi |
|- ( ph -> ( M + 1 ) e. Z ) |
| 12 |
1 6 11 3 4 5
|
isumsplit |
|- ( ph -> sum_ k e. Z A = ( sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |
| 13 |
2
|
zcnd |
|- ( ph -> M e. CC ) |
| 14 |
|
ax-1cn |
|- 1 e. CC |
| 15 |
|
pncan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
| 16 |
13 14 15
|
sylancl |
|- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 17 |
16
|
oveq2d |
|- ( ph -> ( M ... ( ( M + 1 ) - 1 ) ) = ( M ... M ) ) |
| 18 |
17
|
sumeq1d |
|- ( ph -> sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A = sum_ k e. ( M ... M ) A ) |
| 19 |
|
elfzuz |
|- ( k e. ( M ... M ) -> k e. ( ZZ>= ` M ) ) |
| 20 |
19 1
|
eleqtrrdi |
|- ( k e. ( M ... M ) -> k e. Z ) |
| 21 |
20 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... M ) ) -> ( F ` k ) = A ) |
| 22 |
21
|
sumeq2dv |
|- ( ph -> sum_ k e. ( M ... M ) ( F ` k ) = sum_ k e. ( M ... M ) A ) |
| 23 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
| 24 |
23
|
eleq1d |
|- ( k = M -> ( ( F ` k ) e. CC <-> ( F ` M ) e. CC ) ) |
| 25 |
3 4
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 26 |
25
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
| 27 |
8 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
| 28 |
24 26 27
|
rspcdva |
|- ( ph -> ( F ` M ) e. CC ) |
| 29 |
23
|
fsum1 |
|- ( ( M e. ZZ /\ ( F ` M ) e. CC ) -> sum_ k e. ( M ... M ) ( F ` k ) = ( F ` M ) ) |
| 30 |
2 28 29
|
syl2anc |
|- ( ph -> sum_ k e. ( M ... M ) ( F ` k ) = ( F ` M ) ) |
| 31 |
18 22 30
|
3eqtr2d |
|- ( ph -> sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A = ( F ` M ) ) |
| 32 |
31
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ... ( ( M + 1 ) - 1 ) ) A + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |
| 33 |
12 32
|
eqtrd |
|- ( ph -> sum_ k e. Z A = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) A ) ) |