Step |
Hyp |
Ref |
Expression |
1 |
|
isumadd.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumadd.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumadd.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
4 |
|
isumadd.4 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
5 |
|
isumadd.5 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) |
6 |
|
isumadd.6 |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
7 |
|
isumadd.7 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
8 |
|
isumadd.8 |
|- ( ph -> seq M ( + , G ) e. dom ~~> ) |
9 |
|
fveq2 |
|- ( m = k -> ( F ` m ) = ( F ` k ) ) |
10 |
|
fveq2 |
|- ( m = k -> ( G ` m ) = ( G ` k ) ) |
11 |
9 10
|
oveq12d |
|- ( m = k -> ( ( F ` m ) + ( G ` m ) ) = ( ( F ` k ) + ( G ` k ) ) ) |
12 |
|
eqid |
|- ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) = ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) |
13 |
|
ovex |
|- ( ( F ` k ) + ( G ` k ) ) e. _V |
14 |
11 12 13
|
fvmpt |
|- ( k e. Z -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
15 |
14
|
adantl |
|- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
16 |
3 5
|
oveq12d |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) + ( G ` k ) ) = ( A + B ) ) |
17 |
15 16
|
eqtrd |
|- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( A + B ) ) |
18 |
4 6
|
addcld |
|- ( ( ph /\ k e. Z ) -> ( A + B ) e. CC ) |
19 |
1 2 3 4 7
|
isumclim2 |
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
20 |
|
seqex |
|- seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) e. _V |
21 |
20
|
a1i |
|- ( ph -> seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) e. _V ) |
22 |
1 2 5 6 8
|
isumclim2 |
|- ( ph -> seq M ( + , G ) ~~> sum_ k e. Z B ) |
23 |
3 4
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
24 |
1 2 23
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
25 |
24
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC ) |
26 |
5 6
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
27 |
1 2 26
|
serf |
|- ( ph -> seq M ( + , G ) : Z --> CC ) |
28 |
27
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , G ) ` j ) e. CC ) |
29 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
30 |
29 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
31 |
|
simpll |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ph ) |
32 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
33 |
32 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
34 |
33
|
adantl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> k e. Z ) |
35 |
31 34 23
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
36 |
31 34 26
|
syl2anc |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) e. CC ) |
37 |
34 14
|
syl |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ` k ) = ( ( F ` k ) + ( G ` k ) ) ) |
38 |
30 35 36 37
|
seradd |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) ` j ) = ( ( seq M ( + , F ) ` j ) + ( seq M ( + , G ) ` j ) ) ) |
39 |
1 2 19 21 22 25 28 38
|
climadd |
|- ( ph -> seq M ( + , ( m e. Z |-> ( ( F ` m ) + ( G ` m ) ) ) ) ~~> ( sum_ k e. Z A + sum_ k e. Z B ) ) |
40 |
1 2 17 18 39
|
isumclim |
|- ( ph -> sum_ k e. Z ( A + B ) = ( sum_ k e. Z A + sum_ k e. Z B ) ) |