Metamath Proof Explorer


Theorem isumcl

Description: The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1
|- Z = ( ZZ>= ` M )
isumcl.2
|- ( ph -> M e. ZZ )
isumcl.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
isumcl.4
|- ( ( ph /\ k e. Z ) -> A e. CC )
isumcl.5
|- ( ph -> seq M ( + , F ) e. dom ~~> )
Assertion isumcl
|- ( ph -> sum_ k e. Z A e. CC )

Proof

Step Hyp Ref Expression
1 isumcl.1
 |-  Z = ( ZZ>= ` M )
2 isumcl.2
 |-  ( ph -> M e. ZZ )
3 isumcl.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
4 isumcl.4
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
5 isumcl.5
 |-  ( ph -> seq M ( + , F ) e. dom ~~> )
6 1 2 3 4 isum
 |-  ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) )
7 fclim
 |-  ~~> : dom ~~> --> CC
8 ffvelrn
 |-  ( ( ~~> : dom ~~> --> CC /\ seq M ( + , F ) e. dom ~~> ) -> ( ~~> ` seq M ( + , F ) ) e. CC )
9 7 5 8 sylancr
 |-  ( ph -> ( ~~> ` seq M ( + , F ) ) e. CC )
10 6 9 eqeltrd
 |-  ( ph -> sum_ k e. Z A e. CC )