Step |
Hyp |
Ref |
Expression |
1 |
|
isumclim.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumclim.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumclim.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
4 |
|
isumclim.4 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
5 |
|
isumclim.6 |
|- ( ph -> seq M ( + , F ) ~~> B ) |
6 |
1 2 3 4
|
isum |
|- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) ) |
7 |
|
fclim |
|- ~~> : dom ~~> --> CC |
8 |
|
ffun |
|- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
9 |
7 8
|
ax-mp |
|- Fun ~~> |
10 |
|
funbrfv |
|- ( Fun ~~> -> ( seq M ( + , F ) ~~> B -> ( ~~> ` seq M ( + , F ) ) = B ) ) |
11 |
9 5 10
|
mpsyl |
|- ( ph -> ( ~~> ` seq M ( + , F ) ) = B ) |
12 |
6 11
|
eqtrd |
|- ( ph -> sum_ k e. Z A = B ) |