Description: A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumclim.1 | |- Z = ( ZZ>= ` M ) |
|
isumclim.2 | |- ( ph -> M e. ZZ ) |
||
isumclim.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
isumclim.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
isumclim2.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
Assertion | isumclim2 | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumclim.1 | |- Z = ( ZZ>= ` M ) |
|
2 | isumclim.2 | |- ( ph -> M e. ZZ ) |
|
3 | isumclim.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
4 | isumclim.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
5 | isumclim2.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
6 | climdm | |- ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
|
7 | 5 6 | sylib | |- ( ph -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
8 | 1 2 3 4 | isum | |- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) ) |
9 | 7 8 | breqtrrd | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |