Step |
Hyp |
Ref |
Expression |
1 |
|
isumclim3.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumclim3.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumclim3.3 |
|- ( ph -> F e. dom ~~> ) |
4 |
|
isumclim3.4 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
5 |
|
isumclim3.5 |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) = sum_ k e. ( M ... j ) A ) |
6 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
7 |
3 6
|
sylib |
|- ( ph -> F ~~> ( ~~> ` F ) ) |
8 |
|
sumfc |
|- sum_ m e. Z ( ( k e. Z |-> A ) ` m ) = sum_ k e. Z A |
9 |
|
eqidd |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
10 |
4
|
fmpttd |
|- ( ph -> ( k e. Z |-> A ) : Z --> CC ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
12 |
1 2 9 11
|
isum |
|- ( ph -> sum_ m e. Z ( ( k e. Z |-> A ) ` m ) = ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) ) |
13 |
8 12
|
eqtr3id |
|- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) ) |
14 |
|
seqex |
|- seq M ( + , ( k e. Z |-> A ) ) e. _V |
15 |
14
|
a1i |
|- ( ph -> seq M ( + , ( k e. Z |-> A ) ) e. _V ) |
16 |
|
fvres |
|- ( m e. ( M ... j ) -> ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
17 |
|
fzssuz |
|- ( M ... j ) C_ ( ZZ>= ` M ) |
18 |
17 1
|
sseqtrri |
|- ( M ... j ) C_ Z |
19 |
|
resmpt |
|- ( ( M ... j ) C_ Z -> ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) ) |
20 |
18 19
|
ax-mp |
|- ( ( k e. Z |-> A ) |` ( M ... j ) ) = ( k e. ( M ... j ) |-> A ) |
21 |
20
|
fveq1i |
|- ( ( ( k e. Z |-> A ) |` ( M ... j ) ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) |
22 |
16 21
|
eqtr3di |
|- ( m e. ( M ... j ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. ( M ... j ) |-> A ) ` m ) ) |
23 |
22
|
sumeq2i |
|- sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = sum_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) |
24 |
|
sumfc |
|- sum_ m e. ( M ... j ) ( ( k e. ( M ... j ) |-> A ) ` m ) = sum_ k e. ( M ... j ) A |
25 |
23 24
|
eqtri |
|- sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = sum_ k e. ( M ... j ) A |
26 |
|
eqidd |
|- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) = ( ( k e. Z |-> A ) ` m ) ) |
27 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
28 |
27 1
|
eleqtrdi |
|- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
29 |
|
simpl |
|- ( ( ph /\ j e. Z ) -> ph ) |
30 |
|
elfzuz |
|- ( m e. ( M ... j ) -> m e. ( ZZ>= ` M ) ) |
31 |
30 1
|
eleqtrrdi |
|- ( m e. ( M ... j ) -> m e. Z ) |
32 |
29 31 11
|
syl2an |
|- ( ( ( ph /\ j e. Z ) /\ m e. ( M ... j ) ) -> ( ( k e. Z |-> A ) ` m ) e. CC ) |
33 |
26 28 32
|
fsumser |
|- ( ( ph /\ j e. Z ) -> sum_ m e. ( M ... j ) ( ( k e. Z |-> A ) ` m ) = ( seq M ( + , ( k e. Z |-> A ) ) ` j ) ) |
34 |
25 33
|
eqtr3id |
|- ( ( ph /\ j e. Z ) -> sum_ k e. ( M ... j ) A = ( seq M ( + , ( k e. Z |-> A ) ) ` j ) ) |
35 |
5 34
|
eqtr2d |
|- ( ( ph /\ j e. Z ) -> ( seq M ( + , ( k e. Z |-> A ) ) ` j ) = ( F ` j ) ) |
36 |
1 15 3 2 35
|
climeq |
|- ( ph -> ( seq M ( + , ( k e. Z |-> A ) ) ~~> x <-> F ~~> x ) ) |
37 |
36
|
iotabidv |
|- ( ph -> ( iota x seq M ( + , ( k e. Z |-> A ) ) ~~> x ) = ( iota x F ~~> x ) ) |
38 |
|
df-fv |
|- ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) = ( iota x seq M ( + , ( k e. Z |-> A ) ) ~~> x ) |
39 |
|
df-fv |
|- ( ~~> ` F ) = ( iota x F ~~> x ) |
40 |
37 38 39
|
3eqtr4g |
|- ( ph -> ( ~~> ` seq M ( + , ( k e. Z |-> A ) ) ) = ( ~~> ` F ) ) |
41 |
13 40
|
eqtrd |
|- ( ph -> sum_ k e. Z A = ( ~~> ` F ) ) |
42 |
7 41
|
breqtrrd |
|- ( ph -> F ~~> sum_ k e. Z A ) |