Metamath Proof Explorer


Theorem isumdivc

Description: An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1
|- Z = ( ZZ>= ` M )
isumcl.2
|- ( ph -> M e. ZZ )
isumcl.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
isumcl.4
|- ( ( ph /\ k e. Z ) -> A e. CC )
isumcl.5
|- ( ph -> seq M ( + , F ) e. dom ~~> )
summulc.6
|- ( ph -> B e. CC )
isumdivc.7
|- ( ph -> B =/= 0 )
Assertion isumdivc
|- ( ph -> ( sum_ k e. Z A / B ) = sum_ k e. Z ( A / B ) )

Proof

Step Hyp Ref Expression
1 isumcl.1
 |-  Z = ( ZZ>= ` M )
2 isumcl.2
 |-  ( ph -> M e. ZZ )
3 isumcl.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
4 isumcl.4
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
5 isumcl.5
 |-  ( ph -> seq M ( + , F ) e. dom ~~> )
6 summulc.6
 |-  ( ph -> B e. CC )
7 isumdivc.7
 |-  ( ph -> B =/= 0 )
8 6 7 reccld
 |-  ( ph -> ( 1 / B ) e. CC )
9 1 2 3 4 5 8 isummulc1
 |-  ( ph -> ( sum_ k e. Z A x. ( 1 / B ) ) = sum_ k e. Z ( A x. ( 1 / B ) ) )
10 1 2 3 4 5 isumcl
 |-  ( ph -> sum_ k e. Z A e. CC )
11 10 6 7 divrecd
 |-  ( ph -> ( sum_ k e. Z A / B ) = ( sum_ k e. Z A x. ( 1 / B ) ) )
12 6 adantr
 |-  ( ( ph /\ k e. Z ) -> B e. CC )
13 7 adantr
 |-  ( ( ph /\ k e. Z ) -> B =/= 0 )
14 4 12 13 divrecd
 |-  ( ( ph /\ k e. Z ) -> ( A / B ) = ( A x. ( 1 / B ) ) )
15 14 sumeq2dv
 |-  ( ph -> sum_ k e. Z ( A / B ) = sum_ k e. Z ( A x. ( 1 / B ) ) )
16 9 11 15 3eqtr4d
 |-  ( ph -> ( sum_ k e. Z A / B ) = sum_ k e. Z ( A / B ) )