Metamath Proof Explorer


Theorem isumgrs

Description: The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v
|- V = ( Vtx ` G )
isumgr.e
|- E = ( iEdg ` G )
Assertion isumgrs
|- ( G e. U -> ( G e. UMGraph <-> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) )

Proof

Step Hyp Ref Expression
1 isumgr.v
 |-  V = ( Vtx ` G )
2 isumgr.e
 |-  E = ( iEdg ` G )
3 1 2 isumgr
 |-  ( G e. U -> ( G e. UMGraph <-> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) )
4 prprrab
 |-  { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 }
5 4 a1i
 |-  ( G e. U -> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } )
6 5 feq3d
 |-  ( G e. U -> ( E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } <-> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) )
7 3 6 bitrd
 |-  ( G e. U -> ( G e. UMGraph <-> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) )