Metamath Proof Explorer


Theorem isumle

Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumle.1
|- Z = ( ZZ>= ` M )
isumle.2
|- ( ph -> M e. ZZ )
isumle.3
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
isumle.4
|- ( ( ph /\ k e. Z ) -> A e. RR )
isumle.5
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = B )
isumle.6
|- ( ( ph /\ k e. Z ) -> B e. RR )
isumle.7
|- ( ( ph /\ k e. Z ) -> A <_ B )
isumle.8
|- ( ph -> seq M ( + , F ) e. dom ~~> )
isumle.9
|- ( ph -> seq M ( + , G ) e. dom ~~> )
Assertion isumle
|- ( ph -> sum_ k e. Z A <_ sum_ k e. Z B )

Proof

Step Hyp Ref Expression
1 isumle.1
 |-  Z = ( ZZ>= ` M )
2 isumle.2
 |-  ( ph -> M e. ZZ )
3 isumle.3
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A )
4 isumle.4
 |-  ( ( ph /\ k e. Z ) -> A e. RR )
5 isumle.5
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = B )
6 isumle.6
 |-  ( ( ph /\ k e. Z ) -> B e. RR )
7 isumle.7
 |-  ( ( ph /\ k e. Z ) -> A <_ B )
8 isumle.8
 |-  ( ph -> seq M ( + , F ) e. dom ~~> )
9 isumle.9
 |-  ( ph -> seq M ( + , G ) e. dom ~~> )
10 climdm
 |-  ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) )
11 8 10 sylib
 |-  ( ph -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) )
12 climdm
 |-  ( seq M ( + , G ) e. dom ~~> <-> seq M ( + , G ) ~~> ( ~~> ` seq M ( + , G ) ) )
13 9 12 sylib
 |-  ( ph -> seq M ( + , G ) ~~> ( ~~> ` seq M ( + , G ) ) )
14 3 4 eqeltrd
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR )
15 5 6 eqeltrd
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR )
16 7 3 5 3brtr4d
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) )
17 1 2 11 13 14 15 16 iserle
 |-  ( ph -> ( ~~> ` seq M ( + , F ) ) <_ ( ~~> ` seq M ( + , G ) ) )
18 4 recnd
 |-  ( ( ph /\ k e. Z ) -> A e. CC )
19 1 2 3 18 isum
 |-  ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) )
20 6 recnd
 |-  ( ( ph /\ k e. Z ) -> B e. CC )
21 1 2 5 20 isum
 |-  ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , G ) ) )
22 17 19 21 3brtr4d
 |-  ( ph -> sum_ k e. Z A <_ sum_ k e. Z B )