Step |
Hyp |
Ref |
Expression |
1 |
|
isumle.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumle.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumle.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
4 |
|
isumle.4 |
|- ( ( ph /\ k e. Z ) -> A e. RR ) |
5 |
|
isumle.5 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) |
6 |
|
isumle.6 |
|- ( ( ph /\ k e. Z ) -> B e. RR ) |
7 |
|
isumle.7 |
|- ( ( ph /\ k e. Z ) -> A <_ B ) |
8 |
|
isumle.8 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
9 |
|
isumle.9 |
|- ( ph -> seq M ( + , G ) e. dom ~~> ) |
10 |
|
climdm |
|- ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
11 |
8 10
|
sylib |
|- ( ph -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
12 |
|
climdm |
|- ( seq M ( + , G ) e. dom ~~> <-> seq M ( + , G ) ~~> ( ~~> ` seq M ( + , G ) ) ) |
13 |
9 12
|
sylib |
|- ( ph -> seq M ( + , G ) ~~> ( ~~> ` seq M ( + , G ) ) ) |
14 |
3 4
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
15 |
5 6
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
16 |
7 3 5
|
3brtr4d |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
17 |
1 2 11 13 14 15 16
|
iserle |
|- ( ph -> ( ~~> ` seq M ( + , F ) ) <_ ( ~~> ` seq M ( + , G ) ) ) |
18 |
4
|
recnd |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
19 |
1 2 3 18
|
isum |
|- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) ) |
20 |
6
|
recnd |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
21 |
1 2 5 20
|
isum |
|- ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , G ) ) ) |
22 |
17 19 21
|
3brtr4d |
|- ( ph -> sum_ k e. Z A <_ sum_ k e. Z B ) |