Step |
Hyp |
Ref |
Expression |
1 |
|
isumless.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumless.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumless.3 |
|- ( ph -> A e. Fin ) |
4 |
|
isumless.4 |
|- ( ph -> A C_ Z ) |
5 |
|
isumless.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
6 |
|
isumless.6 |
|- ( ( ph /\ k e. Z ) -> B e. RR ) |
7 |
|
isumless.7 |
|- ( ( ph /\ k e. Z ) -> 0 <_ B ) |
8 |
|
isumless.8 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
9 |
4
|
sselda |
|- ( ( ph /\ k e. A ) -> k e. Z ) |
10 |
6
|
recnd |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
11 |
9 10
|
syldan |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
12 |
11
|
ralrimiva |
|- ( ph -> A. k e. A B e. CC ) |
13 |
1
|
eqimssi |
|- Z C_ ( ZZ>= ` M ) |
14 |
13
|
orci |
|- ( Z C_ ( ZZ>= ` M ) \/ Z e. Fin ) |
15 |
14
|
a1i |
|- ( ph -> ( Z C_ ( ZZ>= ` M ) \/ Z e. Fin ) ) |
16 |
|
sumss2 |
|- ( ( ( A C_ Z /\ A. k e. A B e. CC ) /\ ( Z C_ ( ZZ>= ` M ) \/ Z e. Fin ) ) -> sum_ k e. A B = sum_ k e. Z if ( k e. A , B , 0 ) ) |
17 |
4 12 15 16
|
syl21anc |
|- ( ph -> sum_ k e. A B = sum_ k e. Z if ( k e. A , B , 0 ) ) |
18 |
|
eleq1w |
|- ( j = k -> ( j e. A <-> k e. A ) ) |
19 |
|
fveq2 |
|- ( j = k -> ( F ` j ) = ( F ` k ) ) |
20 |
18 19
|
ifbieq1d |
|- ( j = k -> if ( j e. A , ( F ` j ) , 0 ) = if ( k e. A , ( F ` k ) , 0 ) ) |
21 |
|
eqid |
|- ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) = ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) |
22 |
|
fvex |
|- ( F ` k ) e. _V |
23 |
|
c0ex |
|- 0 e. _V |
24 |
22 23
|
ifex |
|- if ( k e. A , ( F ` k ) , 0 ) e. _V |
25 |
20 21 24
|
fvmpt |
|- ( k e. Z -> ( ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ` k ) = if ( k e. A , ( F ` k ) , 0 ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ` k ) = if ( k e. A , ( F ` k ) , 0 ) ) |
27 |
5
|
ifeq1d |
|- ( ( ph /\ k e. Z ) -> if ( k e. A , ( F ` k ) , 0 ) = if ( k e. A , B , 0 ) ) |
28 |
26 27
|
eqtrd |
|- ( ( ph /\ k e. Z ) -> ( ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ` k ) = if ( k e. A , B , 0 ) ) |
29 |
|
0re |
|- 0 e. RR |
30 |
|
ifcl |
|- ( ( B e. RR /\ 0 e. RR ) -> if ( k e. A , B , 0 ) e. RR ) |
31 |
6 29 30
|
sylancl |
|- ( ( ph /\ k e. Z ) -> if ( k e. A , B , 0 ) e. RR ) |
32 |
|
leid |
|- ( B e. RR -> B <_ B ) |
33 |
|
breq1 |
|- ( B = if ( k e. A , B , 0 ) -> ( B <_ B <-> if ( k e. A , B , 0 ) <_ B ) ) |
34 |
|
breq1 |
|- ( 0 = if ( k e. A , B , 0 ) -> ( 0 <_ B <-> if ( k e. A , B , 0 ) <_ B ) ) |
35 |
33 34
|
ifboth |
|- ( ( B <_ B /\ 0 <_ B ) -> if ( k e. A , B , 0 ) <_ B ) |
36 |
32 35
|
sylan |
|- ( ( B e. RR /\ 0 <_ B ) -> if ( k e. A , B , 0 ) <_ B ) |
37 |
6 7 36
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> if ( k e. A , B , 0 ) <_ B ) |
38 |
1 2 3 4 28 11
|
fsumcvg3 |
|- ( ph -> seq M ( + , ( j e. Z |-> if ( j e. A , ( F ` j ) , 0 ) ) ) e. dom ~~> ) |
39 |
1 2 28 31 5 6 37 38 8
|
isumle |
|- ( ph -> sum_ k e. Z if ( k e. A , B , 0 ) <_ sum_ k e. Z B ) |
40 |
17 39
|
eqbrtrd |
|- ( ph -> sum_ k e. A B <_ sum_ k e. Z B ) |