Step |
Hyp |
Ref |
Expression |
1 |
|
isumltss.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumltss.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumltss.3 |
|- ( ph -> A e. Fin ) |
4 |
|
isumltss.4 |
|- ( ph -> A C_ Z ) |
5 |
|
isumltss.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
6 |
|
isumltss.6 |
|- ( ( ph /\ k e. Z ) -> B e. RR+ ) |
7 |
|
isumltss.7 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
8 |
1
|
uzinf |
|- ( M e. ZZ -> -. Z e. Fin ) |
9 |
2 8
|
syl |
|- ( ph -> -. Z e. Fin ) |
10 |
|
ssdif0 |
|- ( Z C_ A <-> ( Z \ A ) = (/) ) |
11 |
|
eqss |
|- ( A = Z <-> ( A C_ Z /\ Z C_ A ) ) |
12 |
|
eleq1 |
|- ( A = Z -> ( A e. Fin <-> Z e. Fin ) ) |
13 |
3 12
|
syl5ibcom |
|- ( ph -> ( A = Z -> Z e. Fin ) ) |
14 |
11 13
|
syl5bir |
|- ( ph -> ( ( A C_ Z /\ Z C_ A ) -> Z e. Fin ) ) |
15 |
4 14
|
mpand |
|- ( ph -> ( Z C_ A -> Z e. Fin ) ) |
16 |
10 15
|
syl5bir |
|- ( ph -> ( ( Z \ A ) = (/) -> Z e. Fin ) ) |
17 |
9 16
|
mtod |
|- ( ph -> -. ( Z \ A ) = (/) ) |
18 |
|
neq0 |
|- ( -. ( Z \ A ) = (/) <-> E. x x e. ( Z \ A ) ) |
19 |
17 18
|
sylib |
|- ( ph -> E. x x e. ( Z \ A ) ) |
20 |
3
|
adantr |
|- ( ( ph /\ x e. ( Z \ A ) ) -> A e. Fin ) |
21 |
4
|
adantr |
|- ( ( ph /\ x e. ( Z \ A ) ) -> A C_ Z ) |
22 |
21
|
sselda |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. A ) -> k e. Z ) |
23 |
6
|
adantlr |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> B e. RR+ ) |
24 |
23
|
rpred |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> B e. RR ) |
25 |
22 24
|
syldan |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. A ) -> B e. RR ) |
26 |
20 25
|
fsumrecl |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B e. RR ) |
27 |
|
snfi |
|- { x } e. Fin |
28 |
|
unfi |
|- ( ( A e. Fin /\ { x } e. Fin ) -> ( A u. { x } ) e. Fin ) |
29 |
20 27 28
|
sylancl |
|- ( ( ph /\ x e. ( Z \ A ) ) -> ( A u. { x } ) e. Fin ) |
30 |
|
eldifi |
|- ( x e. ( Z \ A ) -> x e. Z ) |
31 |
30
|
snssd |
|- ( x e. ( Z \ A ) -> { x } C_ Z ) |
32 |
4 31
|
anim12i |
|- ( ( ph /\ x e. ( Z \ A ) ) -> ( A C_ Z /\ { x } C_ Z ) ) |
33 |
|
unss |
|- ( ( A C_ Z /\ { x } C_ Z ) <-> ( A u. { x } ) C_ Z ) |
34 |
32 33
|
sylib |
|- ( ( ph /\ x e. ( Z \ A ) ) -> ( A u. { x } ) C_ Z ) |
35 |
34
|
sselda |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. ( A u. { x } ) ) -> k e. Z ) |
36 |
35 24
|
syldan |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. ( A u. { x } ) ) -> B e. RR ) |
37 |
29 36
|
fsumrecl |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. ( A u. { x } ) B e. RR ) |
38 |
2
|
adantr |
|- ( ( ph /\ x e. ( Z \ A ) ) -> M e. ZZ ) |
39 |
5
|
adantlr |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> ( F ` k ) = B ) |
40 |
7
|
adantr |
|- ( ( ph /\ x e. ( Z \ A ) ) -> seq M ( + , F ) e. dom ~~> ) |
41 |
1 38 39 24 40
|
isumrecl |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. Z B e. RR ) |
42 |
27
|
a1i |
|- ( ( ph /\ x e. ( Z \ A ) ) -> { x } e. Fin ) |
43 |
|
vex |
|- x e. _V |
44 |
43
|
snnz |
|- { x } =/= (/) |
45 |
44
|
a1i |
|- ( ( ph /\ x e. ( Z \ A ) ) -> { x } =/= (/) ) |
46 |
31
|
adantl |
|- ( ( ph /\ x e. ( Z \ A ) ) -> { x } C_ Z ) |
47 |
46
|
sselda |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. { x } ) -> k e. Z ) |
48 |
47 23
|
syldan |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. { x } ) -> B e. RR+ ) |
49 |
42 45 48
|
fsumrpcl |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. { x } B e. RR+ ) |
50 |
26 49
|
ltaddrpd |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B < ( sum_ k e. A B + sum_ k e. { x } B ) ) |
51 |
|
eldifn |
|- ( x e. ( Z \ A ) -> -. x e. A ) |
52 |
51
|
adantl |
|- ( ( ph /\ x e. ( Z \ A ) ) -> -. x e. A ) |
53 |
|
disjsn |
|- ( ( A i^i { x } ) = (/) <-> -. x e. A ) |
54 |
52 53
|
sylibr |
|- ( ( ph /\ x e. ( Z \ A ) ) -> ( A i^i { x } ) = (/) ) |
55 |
|
eqidd |
|- ( ( ph /\ x e. ( Z \ A ) ) -> ( A u. { x } ) = ( A u. { x } ) ) |
56 |
23
|
rpcnd |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> B e. CC ) |
57 |
35 56
|
syldan |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. ( A u. { x } ) ) -> B e. CC ) |
58 |
54 55 29 57
|
fsumsplit |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. ( A u. { x } ) B = ( sum_ k e. A B + sum_ k e. { x } B ) ) |
59 |
50 58
|
breqtrrd |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B < sum_ k e. ( A u. { x } ) B ) |
60 |
23
|
rpge0d |
|- ( ( ( ph /\ x e. ( Z \ A ) ) /\ k e. Z ) -> 0 <_ B ) |
61 |
1 38 29 34 39 24 60 40
|
isumless |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. ( A u. { x } ) B <_ sum_ k e. Z B ) |
62 |
26 37 41 59 61
|
ltletrd |
|- ( ( ph /\ x e. ( Z \ A ) ) -> sum_ k e. A B < sum_ k e. Z B ) |
63 |
19 62
|
exlimddv |
|- ( ph -> sum_ k e. A B < sum_ k e. Z B ) |