Step |
Hyp |
Ref |
Expression |
1 |
|
isumcl.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
isumcl.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
isumcl.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
4 |
|
isumcl.4 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
5 |
|
isumcl.5 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
6 |
|
summulc.6 |
|- ( ph -> B e. CC ) |
7 |
|
eqidd |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( ( k e. Z |-> ( B x. A ) ) ` m ) ) |
8 |
6
|
adantr |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
9 |
8 4
|
mulcld |
|- ( ( ph /\ k e. Z ) -> ( B x. A ) e. CC ) |
10 |
9
|
fmpttd |
|- ( ph -> ( k e. Z |-> ( B x. A ) ) : Z --> CC ) |
11 |
10
|
ffvelrnda |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) e. CC ) |
12 |
1 2 3 4 5
|
isumclim2 |
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
13 |
3 4
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
14 |
13
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
15 |
|
fveq2 |
|- ( k = m -> ( F ` k ) = ( F ` m ) ) |
16 |
15
|
eleq1d |
|- ( k = m -> ( ( F ` k ) e. CC <-> ( F ` m ) e. CC ) ) |
17 |
16
|
rspccva |
|- ( ( A. k e. Z ( F ` k ) e. CC /\ m e. Z ) -> ( F ` m ) e. CC ) |
18 |
14 17
|
sylan |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) e. CC ) |
19 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
20 |
|
ovex |
|- ( B x. A ) e. _V |
21 |
|
eqid |
|- ( k e. Z |-> ( B x. A ) ) = ( k e. Z |-> ( B x. A ) ) |
22 |
21
|
fvmpt2 |
|- ( ( k e. Z /\ ( B x. A ) e. _V ) -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. A ) ) |
23 |
19 20 22
|
sylancl |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. A ) ) |
24 |
3
|
oveq2d |
|- ( ( ph /\ k e. Z ) -> ( B x. ( F ` k ) ) = ( B x. A ) ) |
25 |
23 24
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) ) |
26 |
25
|
ralrimiva |
|- ( ph -> A. k e. Z ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) ) |
27 |
|
nffvmpt1 |
|- F/_ k ( ( k e. Z |-> ( B x. A ) ) ` m ) |
28 |
27
|
nfeq1 |
|- F/ k ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) |
29 |
|
fveq2 |
|- ( k = m -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( ( k e. Z |-> ( B x. A ) ) ` m ) ) |
30 |
15
|
oveq2d |
|- ( k = m -> ( B x. ( F ` k ) ) = ( B x. ( F ` m ) ) ) |
31 |
29 30
|
eqeq12d |
|- ( k = m -> ( ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) <-> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) ) ) |
32 |
28 31
|
rspc |
|- ( m e. Z -> ( A. k e. Z ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) ) ) |
33 |
26 32
|
mpan9 |
|- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) ) |
34 |
1 2 6 12 18 33
|
isermulc2 |
|- ( ph -> seq M ( + , ( k e. Z |-> ( B x. A ) ) ) ~~> ( B x. sum_ k e. Z A ) ) |
35 |
1 2 7 11 34
|
isumclim |
|- ( ph -> sum_ m e. Z ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. sum_ k e. Z A ) ) |
36 |
|
sumfc |
|- sum_ m e. Z ( ( k e. Z |-> ( B x. A ) ) ` m ) = sum_ k e. Z ( B x. A ) |
37 |
35 36
|
eqtr3di |
|- ( ph -> ( B x. sum_ k e. Z A ) = sum_ k e. Z ( B x. A ) ) |